THE WIENER CLOSURE THEOREMS FOR ABSTRACT WIENER SPACES

J. KUELBS AND V. MANDREKAR

Abstract. We introduce \mathcal{L}_1 and \mathcal{L}_2 translates for functions in $\mathcal{L}_1(\mu)$ and $\mathcal{L}_2(\mu)$ where μ is a Gaussian measure on a Banach space. With these translates and the Fourier-Wiener transforms defined by Cameron and Martin we obtain Wiener's closure theorem in $\mathcal{L}_2(\mu)$ and in $\mathcal{L}_1(\mu)$. Using the $\mathcal{L}_1(\mu)$ results we indicate the analogue of the Wiener-Pitt Tauberian theorems for this setup.

1. Introduction. Let μ be the Wiener measure on $C[0, 1]$ and $\mathcal{L}_2(\mu)$ be the space of square integrable Borel functions with respect to μ. For $f \in \mathcal{L}_2(\mu)$, the Fourier-Wiener transform was defined by Cameron and Martin [3]. In this paper we extend this notion to abstract Wiener spaces [6] and obtain an analogue of Wiener’s closure theorem [10] for $\mathcal{L}_2(\mu)$. Our main effort however is to obtain an analogue of Wiener’s closure theorem for $\mathcal{L}_1(\mu)$. From this theorem one can easily derive the Wiener-Pitt Tauberian theorem [8, p. 163].

The paper is organized as follows. In §2, we introduce the notation and sketch the extension of the Fourier-Wiener transform to abstract Wiener space. In §3 we introduce the \mathcal{L}_1-closure theorem. The results on the \mathcal{L}_1-closure theorem and the Tauberian theorem are given in the last section.

2. Preliminaries and notation. Let H be a real separable Hilbert-space and suppose $\| \cdot \|_1$ is a measurable norm [5, p. 374]. Then it is known [6] that $\| \cdot \|_1$ is weaker than $\| \cdot \|$ on H and the canonical Gaussian distribution on H induces a Gaussian measure μ on the Borel subsets of \mathcal{B}, the completion of H under $\| \cdot \|_1$. The triple $(\mathcal{B}, \mu, \| \cdot \|_1)$ is called an abstract Wiener space [6] with generating Hilbert space H.

Received by the editors April 12, 1971.

AMS 1970 subject classifications. Primary 28A40; Secondary 40E05.

Key words and phrases. Abstract Wiener space, Fourier-Wiener transform, Wiener closure theorems, Tauberian theorems.

1 This work was done while the authors were visiting Stanford University and would like to acknowledge partial support from Professor Karlin.

2 Supported in part by NSF Grant GP 9372.

3 Supported in part by NSF Grant GP 28658.

© American Mathematical Society 1972
If y is in B^* (the topological dual of B) then the restriction of y to H is continuous on H because $\|\cdot\|_1$ is weaker than $\|\cdot\|$ on H. Since H is dense in B, the restriction is a one-to-one linear map of B^* into H^*.

We shall identify B^* with a subset of H^* and H^* with H. Now B^* is dense in $H^* = H$ since B^* separates points of H, and hence B^* is dense in B. Furthermore, since B and H are separable we have a countable set $\{\alpha_n\}$ of B^* such that $\{\alpha_n\}$ is an orthonormal basis of H. Here orthogonality is with respect to inner product in H. For each n, (x, α_n), $x \in B$, will mean, of course, $\langle x, \alpha_n \rangle$ applied to the vector x. Since $\alpha_n \in B^* \subset H$ and $\|\alpha_n\| = 1$, it follows that $\langle \cdot, \alpha_n \rangle$ is a bounded linear functional on B and that it has Gaussian distribution with mean zero and variance one with respect to the measure μ on B. If $h \in H$, we define

$$
(x, h)^\sim = \lim_{n \to \infty} (x, h_n) \quad \text{where} \quad (x, h_n) = \sum_{k=1}^{n} c_k(x, \alpha_k)
$$

and $c_k = (h, \alpha_k)$. We note that $\{(x, \alpha_k)\}$ is a sequence of independent Gaussian functions with mean zero and variance one, and $\sum_{k=1}^{\infty} c_k^2 < \infty$, since $h \in H$ and $\{\alpha_k\}$ is complete orthonormal in H. This implies $(x, h)^\sim$ exists for almost all $x \in B$ and it has a Gaussian distribution with mean zero and variance $\|h\|^2$. Furthermore, it is easy to show that $(x, h)^\sim$ equals (x, h) almost everywhere on B if $h \in B^*$, $(x, h)^\sim$ is independent of the complete orthonormal set used in its definition, and finally, if h_1, h_2, \cdots, h_n are orthonormal then $(x, h_1)^\sim, \cdots, (x, h_n)^\sim$ are independent Gaussian functions with mean zero and variance one.

If f is a polynomial in the variables $\{(x, \alpha_k)\}$ then we define the Fourier-Wiener transform \mathcal{F} of f following Cameron and Martin [2], [3] and Segal [9] by

$$
(2.1) \quad \mathcal{F} f(y) = \int_{B} f(\sqrt{2}x + iy) \, d\mu(x) \quad (y \in B).
$$

Here, if $f(x) = g((x, \alpha_1), \cdots, (x, \alpha_N))$ where g is a function of N complex variables, then $f(u+iv) = g((u, \alpha_1)+i(v, \alpha_1), \cdots, (u, \alpha_N)+i(v, \alpha_N))$. Then by [2, p. 491–492] or [9, p. 121], \mathcal{F} is unitary on the class of all polynomials and

$$
(2.2) \quad \mathcal{F}^2 f(y) = f(-y).
$$

Hence in view of the Fourier-Hermite expansion [7, p. 436] one can extend \mathcal{F} to be unitary on $L_2(\mu)$ such that $\mathcal{F} f(y) = f(-y)$. We also remark that $\mathcal{F} f$ can be evaluated as in (2.1) for a much larger class of functionals than the polynomials indicated.

3. Wiener's theorem for $L_2(\mu)$, $0 < p \leq 2$. Let λ be the Lebesgue measure on the Borel subsets of the space of real numbers. The classical
theorem of N. Wiener says that any translation invariant (closed) subspace of \(L_2(\lambda) \) consists precisely of those functions whose Fourier transforms vanish on a measurable set. Our purpose in this section is to generalize Wiener’s theorem to \(L_2(\mu) \). Let \(f \in L_2(\mu) \), then for each \(h \in H \),
\((U_h f)(y) = f(y + h) \exp\left(-\frac{1}{2}(y, h)^2 - \frac{1}{2} ||h||^2 \right) \) is called the \(L_2 \)-translate of \(f \). It is easy to check by the translation theorem as given in [7, p. 435] that, for each \(h \in H \), \(U_h \) is a unitary operator on \(L_2(\mu) \) onto \(L_2(\mu) \). The main tool of the classical proof is the relation of the Fourier transform of the translate of a function to the Fourier transform of the function itself. The following lemma gives the analogous relation for \(f \in L_2(\mu) \).

Lemma 3.1. Let \(f \in L_2(\mu) \), then, for each \(h \in H \),
\[\mathcal{F}(U_h f)(y) = \exp \left(-\frac{i}{2} (y, h)^2 \right) \mathcal{F}(f)(y) \] with \(\mu \)-measure one on \(B \).

Proof. We first assume that \(f \) is a polynomial in some of the variables \(\{(x, \alpha_k): k \geq 1\} \) where \(\{\alpha_k\} \) is completely orthonormal in \(B^* \subseteq H^* \). Then for \(h \in H \) we obtain
\[\mathcal{F}(f)(y) = \int_B f(\sqrt{2}x + iy) \, d\mu(x) \]
\[= \int_B f\left(\sqrt{2} \left(x + \frac{h}{\sqrt{2}} \right) + iy \right) \exp \left\{ -\left(x, \frac{h}{\sqrt{2}} \right)^2 - \frac{(h, h)}{4} \right\} d\mu(x) \]
\[= \int_B f(\sqrt{2}x + iy + h) \exp \left\{ -\frac{1}{2}(\sqrt{2}x + iy, h)^2 - \frac{(h, h)}{4} \right\} d\mu(x) \]
\[\cdot \exp \left(\frac{i}{2} (y, h) \right) \]
\[= \int_B (U_h f)(\sqrt{2}x + iy) \, d\mu(x) \cdot \exp \left(\frac{i}{2} (y, h)^2 \right) \]
\[= \exp \left(\frac{i}{2} (y, h)^2 \right) \mathcal{F}(U_h f)(y). \]
Here the translation by \(h \in H \) is handled as indicated due to the translation theorem [7, p. 435].

For arbitrary \(f \) in \(L_2(\mu) \) we proceed as follows. The operators \(U_h \) and \(\mathcal{F} \) are unitary operators on \(L_2(\mu) \) such that, for each \(h \in H \) and polynomial \(f \) in \(\{(x, \alpha_k)\} \), we have the equation
\[\mathcal{F}(U_h f) = e_h(\cdot) \mathcal{F} f \]
where \(e_h(\cdot) = \exp\{ -i(\cdot, h)^2/2 \} \) and the equation is understood as \(L_2 \)-equivalence. Since such polynomials are dense in \(L_2(\mu) \) [7, p. 436], the proof follows.
The following is our version of Wiener’s theorem.

Theorem 3.2. Let \(\mathcal{W} \) be a translation invariant closed subspace of \(\mathcal{L}_2(\mu) \); i.e., \(U_h \mathcal{W} \subseteq \mathcal{W} \), for each \(h \in H \). Then there exists a measurable subset \(E \) of \(B \) such that \(\mathcal{W} = M_E \) where \(M_E = \{ f \mid f \in \mathcal{L}_2(\mu) \text{ such that } \mathcal{F}f(y) = 0 \text{ a.e. } [\mu] \text{ for all } y \in E \} \). Conversely, each \(M_E \) is translation invariant. Further, \(M_A = M_B \) if and only if \(\mu(A \triangle B) = 0 \).

Proof. The converse being obvious from Lemma 3.1 we proceed to the direct part. We note that the proof is basically classical. Let \(\mathcal{W} \) be a translation invariant closed subspace of \(\mathcal{L}_2(\mu) \). Let \(\mathcal{N} = \mathcal{P} \mathcal{W} \). Since \(\mathcal{P} \) is unitary, \(\mathcal{N} \) is a closed subspace of \(\mathcal{L}_2(\mu) \) and in view of Lemma 3.1, \(\mathcal{N} \) is invariant under multiplication by \(e_h(\cdot) \). Let \(P \) be the orthogonal projection of \(\mathcal{L}_2(\mu) \) onto \(\mathcal{N} \). Then \(f - Pf \perp Pg \) for all \(f, g \in \mathcal{L}_2(\mu) \) and since \(\mathcal{N} \) is invariant under multiplication by \(e_h(\cdot) \), we have, for all \(h \in H \),

\[
\int_B (f(x) - (Pf)(x))(Pg)(x)e_{-h}(x) \, d\mu(x) = 0.
\]

Since \(B^* \subset H \), \(B \) is separable, and every (complex) measure on \(B \) is uniquely determined by its Fourier transform, the above equation implies that, for all \(f, g \in \mathcal{L}_2(\mu) \),

\[
f(x)(Pg)(x) = (Pf)(x)(Pg)(x) \text{ a.e. } \mu.
\]

Interchanging the roles of \(f \) and \(g \) we obtain

\[
f(x)(Pg)(x) = g(x)(Pf)(x) \text{ a.e. } \mu.
\]

Taking \(g \equiv 1 \) we get

\[
(Pf)(x) = \varphi(x)f(x) \text{ a.e. } \mu \text{ for all } f \in \mathcal{L}_2(\mu),
\]

where \(\varphi(x) \) is the projection of the function identically one onto \(\mathcal{N} \). But \(P^2 = P \) implies \(\varphi^2 = \varphi \) a.e. \(\mu \). Hence \(\varphi(x) = 0 \) or 1 a.e. \(\mu \) and we let \(E = \{ x; \varphi(x) = 0 \} \). Since \(f \in \mathcal{N} \) iff \(f = Pf = \varphi f \) we see that \(\mathcal{N} \) consists of those functions which vanish at least on \(E \), giving \(\mathcal{W} = M_E \). The uniqueness part being simple is omitted.

Corollary 3.1 (Wiener [10, p. 267]). Let \(f \in \mathcal{L}_2(\mu) \) such that \(\mu\{ y; (\mathcal{F}f)(y) = 0 \} = 0 \). Then the linear manifold generated by the \(\mathcal{L}_2 \)-translates of \(f \) is dense in \(\mathcal{L}_p(\mu) \), \(0 < p \leq 2 \).

Proof. Since \(\mathcal{L}_2(\mu) \) is dense in \(\mathcal{L}_p(\mu) \) is suffices to show the theorem in the case \(p = 2 \). Let \(\mathcal{W} \) be the closed subspace of \(\mathcal{L}_2(\mu) \) generated by the \(\mathcal{L}_2 \)-translates of \(f \). Then clearly \(\mathcal{W} \) is translation invariant and since \(\mathcal{F}f(y) \neq 0 \) with \(\mu \)-measure one \(\mathcal{W} = M_\emptyset \) where \(\emptyset \) is the empty set. By definition \(M_\emptyset = \mathcal{L}_2(\mu) \) so the proof is complete.
4. Translation in $L_1(\mu)$ and a Tauberian theorem. The translation operation $U_h f (h \in H)$ as used previously is an isometry on $L_2(\mu)$ onto $L_2(\mu)$, but it is not an isometry in $L_1(\mu)$ unless one has the trivial situation $h=0$. The translation for functions in $L_1(\mu)$ which is an isometry is the following:

\[(4.1) \quad W_h f(x) = f(x + h) \exp\{-(x, h) - \frac{1}{2}(h, h)\} \quad (h \in H).\]

That it is an isometry from $L_1(\mu)$ onto $L_1(\mu)$ follows easily from the translation theorem of Cameron-Martin for this setting [7, p. 435]. As we shall see later it also behaves nicely with respect to convolution.

Now the Fourier-Wiener transform of the translate $W_h f$ (assuming f is in $L_1(\mu)$ so that $\mathcal{F} f$ is defined) does not retain the crucial property of Lemma 3.1. However, if we use a slightly modified Fourier-Wiener transform we can obtain a similar result.

We now define the L_1-Fourier-Wiener transform of a function $f \in L_1(\mu)$ by

\[(4.2) \quad \mathcal{F}_1 f(h) = \int_{\mathbb{B}} \exp\{i(x, h)\} f(x) \mu(dx) \quad \text{for} \quad h \in H.\]

In view of the translation theorem [7, p. 435] we have, for each $h_0 \in H$,

\[(4.3) \quad \mathcal{F}_1 (W_{h_0} f)(h) = \exp\{-i(h_0, h)\} \mathcal{F}_1 f(h) \quad \text{for} \quad h \in H.\]

We are now ready to prove a theorem for the L_1-transform and L_1-translates. As one might guess we make use of Wiener's original theorem in some way. We also point out that the L_1-transform in (4.2) is closely related to the Fourier-Wiener transform of Cameron and Martin in [2] which was subsequently modified in [3] becoming the L_2-transform.

A function f is a tame function on B if there exist vectors $h_1, h_2, \ldots, h_k \in H$ such that

\[f(x) = \Gamma((x, h_1), \ldots, (x, h_k))\]

where $\Gamma(u_1, u_2, \ldots, u_k)$ is a Borel measurable function on R_k. By orthogonalization of h_1, h_2, \ldots, h_k we can always write a tame function in the form

\[(4.4) \quad f(x) = \Psi((x, \varphi_1), \ldots, (x, \varphi_N))\]

where $\varphi_1, \ldots, \varphi_N$ are orthonormal in H and Ψ is Borel measurable on R_N. Hence we lose no generality in assuming (4.4) is the case.

Theorem 4.1. Let $f \in L_1(\mu)$ be of the form (4.4) and $\mathcal{F}_1 f(h) \neq 0$ for all $h \in H$. Then \mathcal{W}_p, the linear manifold generated by the L_1-translates of f, is dense in $L_p(\mu)$ for $0 \leq p \leq 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let \(\{q_j; j \geq N+1\} \) be an orthonormal set in \(H \) such that \(\{q_j; j \geq 1\} \) is complete. Then, using the Fourier-Hermite expansion of functions in \(L_2(\mu) \) due to Cameron and Martin [4] and appearing in this generality in Lemma 2.2 of [7], we see that tame functions of the form

\[
L(x) = \Phi[(x, q_1)^{-}, \ldots, (x, q_m)^{-}] \quad (m = 1, 2, \ldots)
\]

where \(L \in L_2(\mu) \) are dense in \(L_2(\mu) \). Since each element in \(L_1(\mu) \) can be approximated in \(L_1 \)-norm by a function in \(L_2(\mu) \) and the \(L_2(\mu) \)-norm is greater than the \(L_1 \)-norm on \(L_2(\mu) \) it follows that functions of the form (4.5) are dense in \(L_1(\mu) \) with respect to the \(L_1 \)-norm. Hence the theorem is proved if the \(L_1 \)-translates approximate any function \(L \in L_2(\mu) \) which is of the form (4.5).

Now any tame function of the form (4.5) with \(m < N \) can be written as a tame function with \(m = N \) by simply multiplying \(\Phi[(u_1, \ldots, u_m)] \) by \(\Phi_1(u_{n+1}, \ldots, u_N) \equiv 1 \) and hence we can assume \(m = N \). On the other hand, if \(m > N \) we then write

\[
f(x) = \Phi[(x, q_1)^{-}, \ldots, (x, q_N)^{-}] \cdot \Phi_2[(x, q_{N+1})^{-}, \ldots, (x, q_m)^{-}]
\]

where \(\Phi_2(u_{N+1}, \ldots, u_m) \equiv 1 \). Hence we can assume without loss of generality that \(m = N \).

By assumption we have for \(h \) of the form \(\sum_{i=1}^{N} a_i q_i \), \((a_1, a_2, \ldots, a_N) \in R_N \),

\[
\mathcal{F}_1 f(h) = \int_H \exp\{i(x, h)^{-}\} f(x) \mu(dx) \neq 0.
\]

Hence we have

\[
\mathcal{F}_1 f(h) = (2\pi)^{-N/2} \int_{R^N} \exp\left\{ \sum_{i=1}^{N} a_i u_i \right\} \Psi[(u_1, \ldots, u_N)]
\]

\[
\times \exp\left\{ -\frac{1}{2} \sum_{i=1}^{N} u_i^2 \right\} du_1, \ldots, du_N \neq 0.
\]

Thus the ordinary Fourier transform of

\[
\Lambda(v) = (2\pi)^{-N/2} \Psi(v) \exp\{-\frac{1}{2} v \cdot v\} \quad (v \in R_N)
\]

never vanishes on \(R_N \). Here we use \(v \cdot u \) to denote \(\sum_{i=1}^{N} u_i v_i \) if \(u, v \in R_N \). Thus the ordinary translates of (4.7) generate a dense subset of \(L_{1,N} \) where \(L_{1,N} \) denotes the integrable Borel functions with respect to Lebesgue measure on \(R_N \). Let \(L_{1,N}^G \) denote the Borel functions on \(R_N \) which are integrable with respect to the Gaussian density

\[
g(v) = (2\pi)^{-N/2} \exp\{-\frac{1}{2} v \cdot v\} \quad (v \in R_N).
\]

Take an arbitrary tame function \(L \in L_2(\mu) \) of the form (4.5) with \(m = N \).
Then $\Phi(v) \in L^2_{1,N}$ and $\Phi(v)g(v) \in L^1_{1,N}$. Take $\varepsilon > 0$. Then by Wiener's theorem for $L^1_{1,N}$ [8, p. 162] there exist translates $t_1, \ldots, t_k \in \mathbb{R}^N$ and constants c_1, \ldots, c_k such that

$$
\left(4.9\right) \quad \int_{R^N} \left| \sum_{j=1}^{K} c_j \Lambda(v + t_j) - \Phi(v)g(v) \right| \, dv < \varepsilon.
$$

Using (4.7), (4.8), and (4.9) we see that

$$
\left(4.10\right) \quad \int_{R^N} \left| \sum_{j=1}^{K} c_j \Psi(v + t_j) \exp\{ -v \cdot t_j - \frac{1}{2}t_j \cdot t_j \} - \Phi(v)g(v) \right| \, dv < \varepsilon.
$$

Choosing h_1, \ldots, h_k in the subspace of H generated by $\{\varphi_1, \ldots, \varphi_N\}$ and such that $t_j = [(h_j, \varphi_1), \ldots, (h_j, \varphi_N)]$ ($j=1, \ldots, K$), (4.10) then implies

$$
\left(4.11\right) \quad \int_{B} \left| \sum_{j=1}^{K} c_j W_h f(x) - L(x) \right| \, d\mu(x) < \varepsilon.
$$

Hence the tame functions in $L^2_{1}(\mu)$ of the form (4.5) with $m=N$ can be approximated in L^1-norm by our L^1-translates of f. Since $m=N$ represents the general case \mathbb{R} is dense in $L^1_{1}(\mu)$. The proof is now complete since $L^1_{1}(\mu)$ is dense in $L^2_{1}(\mu)$ and the L^1-norm dominates the L^p-distance, $0 < p \leq 1$.

The function $f \in L^1_{1}(\mu)$ is said to be splittable with respect to the complete orthonormal set $\{\varphi_k\}$ if there exists a sequence of integers $N_1 < N_2 < \cdots$ such that, for each integer k,

$$
\left(4.12\right) \quad f(x) = L_k(x) \cdot \Gamma_k(x) \quad \text{a.e. } [\mu]
$$

where $L_k(x) = \Phi_k[\varphi_1, \varphi_2, \cdots, (x, \varphi_N) -]$ and Γ_k is \mathbb{B}_k measurable on B where \mathbb{B}_k is the minimal σ-algebra generated by the functionals $\langle \cdot, \varphi_j \rangle$, $j \geq N_k + 1$.

Remark 4.1. Since Γ_k is \mathbb{B}_k-measurable on B it follows [I, p. 395] that there exists a Borel measurable function defined on the space of all real sequences such that

$$
\Gamma_k(x) = F((x, \varphi_{N_k+1}) -, \cdots) \quad \text{a.e. } [\mu].
$$

Also from (4.12) and the fact that $f \in L^1_{1}(\mu)$ we get that L_k, Γ_k are in $L^1_{1}(\mu)$ provided $f \neq 0$.

We say that $f \in L^1_{1}(\mu)$ is negligibly split if f is splittable and for every $\varepsilon > 0$, there exists a k such that

$$
\int_{B} \left| \Gamma_k(x) - 1 \right| \, d\mu(x) < \varepsilon.
$$

It is easy to see that f is then the product of tame functions.
Theorem 4.2. Let \(f \in L_1(\mu) \) be negligibly split with respect to the complete orthonormal bases \(\{ \varphi_k \} \) in \(H \) and assume that \((\mathcal{F}_1 f)(h) \neq 0 \) for all \(h \in H \). Then the linear manifold \(\mathcal{W} \) generated by \(L_1 \)-translates of \(f \) is dense in \(L_2(\mu), 0 < p \leq 1 \).

Proof. In view of the argument given in the proof of Theorem 4.1 it suffices to prove that one can approximate in \(L_1 \)-norms functions \(L \in L_2(\mu) \) of the form (4.5). Take \(\varepsilon > 0 \), and suppose \(L(x) \) is given. Then there exists \(N_k \) such that \(N_k \geq m \) and

\[
\int_B |\Gamma_{N_k}(x) - 1| \, d\mu(x) < \varepsilon.
\]

Again arguing as in Theorem 4.1 we can now assume that \(m = N_k \). Also we have

\[
\mathcal{F}_1 f(y) = \mathcal{F}_1 L_k(y) \mathcal{F}_1 \Gamma_k(y) e^{(y, y)/2}, \quad y \in H.
\]

The above equation holds as indicated since the functionals \(L_k \) and \(\Gamma_k \) are independent (probabilistic sense). Since \(\mathcal{F}_1 f(y) \neq 0 \) we get \(\mathcal{F}_1 L_k(y) \neq 0 \) by (4.14). Now by the proof of Theorem 4.1 there exist constants \(c_1, c_2, \ldots, c_r \) and vectors \(h_1, h_2, \ldots, h_r \) in the subspace of \(H \) generated by \(\{ \varphi_1, \ldots, \varphi_{N_k} \} \) such that

\[
\int_B \left| \sum_{j=1}^r c_j W_{h_j} L_k(x) - L(x) \right| d\mu(x) < \varepsilon.
\]

In view of Remark 4.1 it follows that

\[\Gamma_k(x + h_j) = \Gamma_k(x) \quad (j = 1, \ldots, r) \]

and hence

\[W_{h_j} f(x) = [W_{h_j}(L(x))] \cdot \Gamma_k(x) \quad (j = 1, \ldots, r). \]

Now \(\Gamma_k \) and \(L_k \) are independent (probabilistic sense) thus (4.13) and (4.15) imply

\[
\int_B \left| \sum_{j=1}^r c_j W_{h_j} f(x) - \sum_{j=1}^r c_j W_{h_j} L_k(x) \right| d\mu(x)
= \int_B \left| \sum_{j=1}^r c_j W_{h_j} L_k(x) [\Gamma_k(x) - 1] \right| d\mu(x)
= \int_B \left| \sum_{j=1}^r c_j W_{h_j} L_k(x) \right| d\mu(x) \cdot \int_B |\Gamma_k(x) - 1| d\mu(x)
\leq \left[\int_B |L(x)| d\mu(x) + \varepsilon \right] \times \varepsilon.
\]
Combining (4.15) and (4.16) along with $\varepsilon > 0$ being arbitrary completes the proof.

REMARK 4.2. If f is a tame function of the form (4.4) then f is easily seen to be negligibly split with respect to the complete orthonormal basis $\{\varphi_k\}$ where $\{\varphi_1, \ldots, \varphi_N\}$ are as in (4.4). Thus Theorem 4.2 actually implies Theorem 4.1, but we proved both theorems since a direct proof of Theorem 4.2 would involve about the same amount of effort.

For an example of a function $f \in L_1(\mu)$ which satisfies Theorem 4.2 but not Theorem 4.1 consider

$$f(x) = \exp\left\{\sum_{k=1}^{\infty} \lambda_k(x, \varphi_k)^{-2}\right\}$$

where $\{\lambda_k\}$ is a sequence of positive numbers such that $\sum_{k=1}^{\infty} \lambda_k < \frac{1}{2}$ and $\{\varphi_k\}$ is an orthonormal set in H. Then $f \in L_1(\mu)$,

$$\mathcal{F}_1 f(h) = \exp\left\{- \sum_{k=1}^{\infty} (h, \varphi_k)^2/2(1 - 2\lambda_k)\right\} \neq 0$$

and f is negligibly split with respect to $\{\varphi_k\}$.

If f and φ are measurable functions on B we define the convolution of f and φ by the usual formula

$$(4.17) \quad f * \varphi(x) = \int_B f(y) \varphi(y - x) \, d\mu(y).$$

In this setup convolution is not always commutative since the measure μ is not translation invariant. It does, however, act in a normal way with respect to translation if we use L_1-translates and we show this in the next lemma.

Lemma 4.3. Suppose $f \in L_1(\mu)$ and $\varphi \in L_\infty(\mu)$. Then

1. $f * \varphi(x)$ exists for each x in B,
2. $(W_h f) * \varphi(x) = f * \varphi(x + h)$ for each $x \in B$ and $h \in H$.

Proof. Since φ is in $L_\infty(\mu)$ and $\varphi(y - x)$ is measurable as a function of y for each $x \in B$ the conclusion of (1) is immediate. Now $f \in L_1(\mu)$ iff $W_h f \in L_1(\mu)$ for each $h \in H$ [7, p. 435] so it follows that $W_h f * \varphi(x)$ exists on B for each $x \in H$. Further,

$$W_h f * \varphi(x) = \int_B W_h f(y) \varphi(y - x) \, d\mu(y)$$

$$= \int_B f(y + h) \exp\{- (x, h)^- - \frac{1}{2}(h, h)^-\} \varphi(y - x) \, d\mu(y)$$

$$= \int_B f(y) \varphi(y - x - h) \, d\mu(y) = f * \varphi(x + h)$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where the third equality follows from the translation theorem [7, p. 435]. Hence (2) holds.

We now state a Tauberian theorem for abstract Wiener spaces. Its proof is exactly as in [10, p. 285] if one uses the definition of convolution in (4.17) and the \(L_1 \)-translates. If \(\varphi \) is defined on \(B \) we say \(\lim_{z \to \infty} \varphi(x) = c \) if for each \(\varepsilon > 0 \) there exists a bounded set \(E \) such that \(|\varphi(x) - c| < \varepsilon \) on \(B - E \).

Theorem 4.3. Suppose \(f \in L_1(\mu) \) and \(\mathcal{F}_1f(y) \neq 0 \), \(y \in H \). Further, assume \(\varphi \in L_\infty(\mu) \) and \(c \) is a constant such that

\[
\lim_{z \to \infty} f \ast \varphi(x) = c \mathcal{F}_1f(0).
\]

Then, if \(f \) is negligibly split, we have \(\lim g \ast \varphi(x) = c \int_B g(x) \, d\mu(x) \) for all \(g \in L_1(\mu) \).

As a final remark we mention that Pitt's Tauberian theorem, as it appears in [8, p. 163], can also be proved in this setting. Here, however, we would define slowly oscillating in terms of a norm bounded set and a norm bounded neighborhood of zero. Since open subsets of \(B \) have positive \(\mu \)-measure the proof is as in [8].

References

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48823