HADAMARD DESIGNS

EDWARD SPENCE

Abstract. It has already been shown, using a combinatorial argument, that a Hadamard design with each letter repeated once and only once can exist for 2, 4 and 8 letters only. In this paper the same result is proved by a different method which utilizes the underlying algebraic structure of such a Hadamard design.

A Hadamard design is a square array of letters which commute in pairs, and to which signs are attached, so that the scalar product of any two distinct rows, considered as vectors, is zero. In [1] Hadamard designs on n letters (or n-letter designs) were studied. These are Hadamard designs with n distinct letters where each letter occurs once and only once in each row and column. It was shown that such a design could exist for n=2, 4 or 8 only.

Clearly, if H is an n-letter design, we may suppose that the sign associated with each element in the first row and column is positive (by changing the sign of each element in a row or column, if necessary) and that the first row and column are identical (interchange rows and columns, if necessary). Suppose therefore that H satisfies the above conditions on the letters a₁, a₂, · · · , aₙ and write −H for the design obtained by changing the sign of every letter in H. Then we have the following

Lemma 1.

\[
\begin{bmatrix}
H & -H \\
-H & H
\end{bmatrix}
\]

is the multiplication table of a loop L of order 2n with elements a₁, a₂, · · · , aₙ, −a₁, −a₂, · · · , −aₙ.

Proof. Since each letter a₁, a₂, · · · , aₙ occurs once and only once in each row and column of H, the array (1) is certainly a latin square. Also,
since its first row and column are identical, it has an identity, and hence
is a loop.

In the case \(n=2 \) it is easy to verify that \(L \) is a cyclic group of order 4
and so for the rest of the paper we assume \(n \geq 2 \).

Suppose that \(a_1 \) is the identity of \(L \) and write \(a_1 = 1 \). It is immediate
from (1) that \((-1)a_1 = -a_1 = a_1(-1)\) and \((-1)^2 = 1\), and hence \(\{1, -1\} \subseteq
Z \), the center of \(L \). Also, from the orthogonality of distinct rows of
\(H \), we have the following condition:

(2) if \(a_i \neq \pm a_j, a_k \neq \pm a_i \), then \(a_ia_k = a_ia_k \Rightarrow a_ia_k = -(a_ia_i) \).

Consequences of (2).

I. \(Z = \{1, -1\} \). For \(1a_i = a_1 \) and if \(a_i \neq \pm 1 \), (2) implies that \(a_i^2 = -1 \).
Thus if \(a_i a_x = x a_i \) for all \(x \in L \), we must have for some \(x \neq \pm 1 \), \(\pm a_i \) (such
exists since \(2n-6 \)), \(a_i a_i = -a_i \), i.e. \(a_i = \pm 1 \) which proves the assertion.

II. If \(x, y \in L \), then \(xy \neq yx \Rightarrow xy = -yx \). Since \(xy \neq yx \) we may suppose

(3) \(x \neq \pm 1, y \neq \pm 1 \) and \(x \neq \pm y \).

Given \(x, y \in L \) there exists a unique \(t \in L \) such that \(xy = tx \), whence, since
\(x \neq \pm t \), as is easily shown from (3), \(ty = -x^2 = 1 \). However \(-(y)y = 1 \)
and cancellation yields \(t = -y \), i.e. \(xy = -yx \).

III. \textit{Any two elements of } \(L \textit{ generate a subgroup.} \) To prove this all we
need verify are the following associative laws

(a) \(x(xy) = x^2y \),

(b) \((xy)x = x(xy) \),

(c) \((yx)x = yx^2 \).

Since these are trivial when \(x = \pm 1 \) or \(y = \pm 1 \) or \(x = \pm y \) we may assume
that none of these equalities is satisfied. Write \(x(xy) = 1 \cdot z \) so that, by
(2), \(xy = -xz = x(-z) \). Cancellation gives \(y = -z \), i.e. \(z = -y \) so that
\(x(xy) = -y = x^2y \) which proves (a). (b) and (c) are proved using II and
(a) above.

IV. \textit{If } \(xy \neq yx \textit{ then } x \textit{ and } y \textit{ generate a quaternion group.} For \(xy \neq yx \Rightarrow \)
\(xy = -yx \) by II, and the result follows using III.

V. \textit{If } \(x(yz) = (xy)z \textit{ then } x, y \textit{ and } z \textit{ generate a subgroup.} Suppose that
(4) \(u, v, w \notin Z \) and all lie in different cosets of \(Z \) in \(L \).

There exists a unique \(t \in L \) such that \(uv = tw = v(-u) \), and hence (2)
yields \(v(-u) = -(ut) = -u^2t \) (by III) = \(t \) since \(u \notin Z \). But \((w)x = t(w)w = -t \), i.e. \((w)x = -u(vw) \) if \(u, v, w \) satisfy (4). Thus
if \((xy)z = x(yz) \), then at least one of \(x, y, z \in Z \) or \(x = \pm y \) or \(x = \pm z \)
or \(y = \pm z \). It follows from III that \(x, y \) and \(z \) generate a subgroup.

Collecting all this information together, we have

\textbf{Theorem 2.} \textit{The loop } \(L \textit{ defined in Lemma 1 (} n \geq 2 \textit{) satisfies the following
conditions:

(i) The center Z has order two and elements $1, -1$ where $(-1)^2 = 1$, $1 \neq -1$.

(ii) If $x \notin Z$, then $x^2 = -1$.

(iii) If $xy \neq yx$ then $xy = -yx$ and x, y generate a quaternion group.

(iv) If $x(yz) = (xy)z$, then x, y, z generate a subgroup.

However, it is known that a loop satisfying the conditions of Theorem 2 must either be a quaternion group or a Cayley loop [2, Theorem 7.2 and the remarks following]. Since a quaternion group has order 8 and a Cayley loop has order 16, it is immediate that $n = 4$ or 8.

In the opposite direction, it is straightforward to verify that the designs obtained from these loops as in (1) are n-letter designs. Consequently,

Theorem 3. There are n-letter designs only for $n = 2, 4$ or 8.

References

Department of Mathematics, University of Glasgow, Glasgow, W.2., Scotland