Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Skeleta of complexes with low $ MU\sb\ast $ projective dimension

Author: David Copeland Johnson
Journal: Proc. Amer. Math. Soc. 32 (1972), 599-604
MSC: Primary 55.25
MathSciNet review: 0288754
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M{U_ \ast }(X)$ be the unitary bordism of a finite complex X. Let $ {X^p}$ be the p-skeleton of X. This note proves that certain properties of $ M{U_ \ast }(X)$ are shared by $ M{U_\ast}({X^p})$ when the projective dimension of $ M{U_\ast}(X)$ as a $ M{U_\ast}$ module is low (0, 1, or 2).

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55.25

Retrieve articles in all journals with MSC: 55.25

Additional Information

PII: S 0002-9939(1972)0288754-1
Keywords: Unitary bordism, connective k-theory, homological dimension, finite complexes, Atiyah-Hirzebruch-Dold spectral sequence
Article copyright: © Copyright 1972 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia