Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On high order derivations of fields


Authors: J. N. Mordeson and B. Vinograde
Journal: Proc. Amer. Math. Soc. 32 (1972), 421-422
MSC: Primary 12.45
DOI: https://doi.org/10.1090/S0002-9939-1972-0289466-0
MathSciNet review: 0289466
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{D}(L/K)$ denote the derivation algebra of a field extension $ L/K$ of prime characteristic. If $ L/K$ is purely inseparable and has an exponent, then every intermediate field F of $ L/K$ equals the center of $ \mathcal{D}(L/F)$. Here we prove the converse of this statement.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12.45

Retrieve articles in all journals with MSC: 12.45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0289466-0
Keywords: High order derivations, field extension, purely inseparable, relative p-base
Article copyright: © Copyright 1972 American Mathematical Society