INJECTIVE HULLS OF CERTAIN S-SYSTEMS
OVER A SEMILATTICE

C. S. JOHNSON, JR. AND F. R. McMORRIS

Abstract. We construct, in the category of S-systems over a semilattice, the injective hulls of S-systems which are homomorphic images of S-subsystems of S.

1. Introduction. In [1] Berthiaume showed that injective hulls exist in the category of S-systems (or S-sets) over a semigroup S. In that paper he also showed that if S is a chain then the injective hull of S itself is its Dedekind-MacNeile completion. In the present paper we consider the case where S is a semilattice and construct the injective hulls of S-systems which are homomorphic images of S-subsystems of S (or, in the notation of [3], S-systems which are in HS(S)). We do this by adapting the techniques used by Bruns and Lakser in [2] to construct injective hulls in the category of semilattices. We obtain as corollaries Berthiaume's result for chains, a characterization of injective cyclic S-systems over a semilattice, and the result that a semilattice S is injective in the category of semilattices if and only if it is injective in the category of S-systems.

2. Preliminaries. Let S be a semigroup. A (right) S-system is a set M equipped with a map (written multiplicatively) from M x S to M such that m(s_1 s_2) = (m s_1) s_2 for all m in M and all s_1, s_2 in S. If one thinks of each element of S as inducing a unary operation on an S-system M, then M is a finitary algebra and all the notions of universal algebra are available. Thus if M and N are S-systems we have A is an S-subsystem of M if and only if A is a homomorphism if and only if \phi(m s) = \phi(m) s for all m in M and all s in S, and an equivalence relation \sim on M is a congruence relation if and only if m_1 \sim m_2 implies m_1 s \sim m_2 s for all s in S. Unless otherwise stated, all algebraic notions will be in this category. We will assume throughout that the semigroup S is a semilattice (i.e., commutative and idempotent).

Lemma 1. If an S-system M has the property that MS = M, then it is partially ordered by the rule m_1 \preceq m_2 if and only if m_1 = m_2 s for some s in S.

Presented to the Society, June 1, 1971; received by the editors June 1, 1971.

Key words and phrases. S-systems, injective S-systems.

© American Mathematical Society 1972

371
Proof. For each \(m \in M \) we have \(m = m_s \) for some \(m \in M \) and \(s \in S \) (since \(MS = M \)), and hence \(m = ms \), so \(m \leq m \). If \(m_1 \leq m_2 \) and \(m_2 \leq m_1 \), we have \(s_1, s_2 \in S \) such that \(m_1 = m_{s_1} \) and \(m_2 = m_{s_2} \). Now \(m_1 s_1 = (m_1 s_2) s_1 = m_2 s_1 s_2 s_1 = m_2 s_2 s_1 = m_1 s_2 = m_2 \). Transitivity is obvious.

Notice that if \(S \) has an identity and \(M \) is a unitary \(S \)-system, then \(MS = M \) and Lemma 1 applies.

When we are dealing with a partial order on an \(S \)-system we will use the symbols "\(V \)" and "\(\wedge \)" to denote least upper bounds and greatest lower bounds, respectively.

We will refer to the partial order of Lemma 1 as the natural partial order on \(M \).

If an \(S \)-system \(M \) is partially ordered in some way and if \(A \subseteq M \) is such that \(V A \) exists, we will say that \(V A \) is \(S \)-distributive if and only if, for each \(S \in S \), \(V \{ sa \mid a \in A \} \) exists and equals \((V A) s \).

Recall the following definitions in a category of algebras: An algebra \(C \) is injective if and only if every homomorphism from a subalgebra \(A \) of an algebra \(B \) into \(C \) has an extension to all of \(B \). An extension \(C \) of an algebra \(A \) is essential if and only if any homomorphism from \(C \) to an algebra \(B \), whose restriction to \(A \) is one-to-one, is itself one-to-one. An injective hull of an algebra is an essential, injective extension.

Lemma 2. Let \(C \) be an \(S \)-system which is partially ordered in such a way that \(V A \) exists, \(V A \) is \(S \)-distributive if and only if, for each \(S \in S \), \(V \{ sa \mid a \in A \} \) exists and equals \((V A) s \).

We will call a subset \(A \) of a poset \(C \) join-dense in \(C \) if and only if \(c = V \{ a \mid a \leq c \} \) for each \(c \in C \). If \(C \) is a complete lattice in which arbitrary joins are \(S \)-distributive, then \(C \) is injective.

Proof. Let \(A \) be an \(S \)-subsystem of an \(S \)-system \(B \) and let \(\phi : A \rightarrow C \) be a homomorphism. Define \(\phi^* : B \rightarrow C \) by

\[
\phi^*(b) = V \{ \phi(a) \mid a \in A, a = bs \text{ for some } s \in S \}.
\]

If \(b \in A \), then

\[
\phi^*(b) = V \{ \phi(bs) \mid s \in S \} = V \{ \phi(b)s \mid s \in S \} = \phi(b)
\]

and thus \(\phi^* \) extends \(\phi \). If \(s_0 \in S \) it is easy to see that \(\{ as_0 \mid a \in A, a = bs \text{ for some } s \in S \} = \{ a \mid a \in A, a = bs_0s \text{ for some } s \in S \} \). Thus

\[
\phi^*(bs_0) = (V \{ \phi(a) \mid a \in A, a = bs \text{ for some } s \in S \})s_0
\]

\[
= V \{ \phi(a)s_0 \mid a \in A, a = bs \text{ for some } s \in S \}
\]

\[
= V \{ \phi(as_0) \mid a \in A, a = bs \text{ for some } s \in S \}
\]

\[
= V \{ \phi(a) \mid a \in A, a = bs_0s \text{ for some } s \in S \} = \phi^*(bs_0).
\]

We will call a subset \(A \) of a poset \(C \) join-dense in \(C \) if and only if \(c = V \{ a \mid a \leq c \} \) for each \(c \in C \). If \(A \) and \(C \) are also \(S \)-systems we will say that \(S \)-distributive joins in \(A \) are preserved in \(C \) if and only if \(a = V B \)
whenever \(B \subseteq A \) and \(a = \bigvee_A B \) is \(S \)-distributive. We will call a map \(\phi \) on a poset \(P \) decreasing if and only if \(\phi(a) \leq a \) for all \(a \in P \).

Lemma 3. Let \(C \) be an \(S \)-system which is partially ordered in such a way that the unary operations induced by \(S \) preserve the order and are decreasing. Let \(A \) be an \(S \)-subsystem of \(C \) and suppose that for each \(a \in A \) there is an \(s_a \in S \) such that, for each \(c \in C \), \(c \land a \) exists and equals \(cs_a \). If \(A \) is join-dense in \(C \) and if \(S \)-distributive joins in \(A \) are preserved in \(C \), then \(C \) is an essential extension of \(A \).

Proof. Let \(\phi : B \rightarrow C \) be a homomorphism with \(\phi \mid_A \) one-to-one. If \(\phi \) is not one-to-one there exist elements \(a, b \in C \) with \(a \neq b \) and \(\phi(a) = \phi(b) \). Since \(A \) is join-dense in \(C \) we may suppose there exists \(u \in A \) with \(u \leq b \) and \(u \leq a \). We have \(\phi(a \land u) = \phi(as_u) = \phi(a)s_u = \phi(b)s_u = \phi(bs_u) = \phi(b \land u) = \phi(u) \).

Now suppose \(s \in S \) and let \(M = \{(u \land x) \mid x \leq a, x \in A \} \). If we show that \(u \subseteq \bigvee_A M \) we will have shown (considering the special case \(s = s_a \)) that \(u \subseteq \bigvee \{u \land x \mid x \leq a, x \in A \} \) and is an \(S \)-distributive join. Hence \(u = \bigvee_C \{u \land x \mid x \leq a, x \in A \} \leq a \), a contradiction. Since \(u \land x \leq u \) implies \((u \land x)s \leq us \), it is clear that \(u \subseteq u \) is an upper bound for \(M \). Let \(v \in A \) be another upper bound for \(M \) with \(v \neq u \). Since meets exist in \(A \) we may further assume that \(v \prec u \). If \(c \in A \) and \(c \leq (u \land a) \) we have \(c \subseteq u \) and \(c = us \land c = us \) implies \(c \subseteq u \land c = (u \land a)s = (u \land c)s \) with \(c \leq as \leq a \). Hence we can again use the fact that \(A \) is join-dense in \(C \) and obtain

\[
(u \land a)s = \bigvee_C \{(u \land x)s \mid x \leq a, x \in A \} = \bigvee_C M \leq v.
\]

Now we have

\[
\phi(us) = \phi(u)s = \phi(a \land u)s = \phi((a \land u)s) = \phi((a \land u)s \land v) = \phi((a \land u)ss_u) = \phi(a \land u)ss_u = \phi(u)ss_u = \phi(uss_u) = \phi(us \land v) = \phi(v),
\]

a contradiction. This establishes the fact that \(us \subseteq \bigvee_A M \) and finishes the proof.

3. **Injective hulls.** Let \(M \) be an \(S \)-system such that \(MS = M \). Recall that, by Lemma 1, \(M \) is partially ordered by the rule \(m_1 \leq m_2 \) if and only if \(m_1 \leq m_2 s \) for some \(s \in S \). Following Bruns and Lakser we will call a subset \(N \) of \(M \) admissible if and only if \(\bigvee N \) exists and is \(S \)-distributive, and we will call \(N \) a \(D \)-ideal if and only if \(\forall y \in N \) and \(x \leq y \) imply \(x \in N \) (i.e., \(NS \subseteq N \)) and \(N \) is closed under \(S \)-distributive joins (i.e., \(A \subseteq N \) and \(A \) admissible implies \(\bigvee A \subseteq N \)). Now \(I_D(M) \), the set of all \(D \)-ideals of \(M \), is closed under arbitrary intersections and is thus a complete lattice under set inclusion. An obvious modification of the proof of [2, Lemma 3] shows that the join operation in \(I_D(M) \) is given by

\[
\bigvee \{A_i \mid i \in I\} = \{\bigvee N \mid N \subseteq \bigcup \{A_i \mid i \in I\}, N \text{ admissible}\}.
\]
It is easy to show that if N is a D-ideal of M then $N^S = \{ ns | s \in S \}$ is also a D-ideal and that $N^S = N \cap M^S$. Thus $I_D(M)$ is a complete lattice in which arbitrary joins are S-distributive. Notice that $m^S = \{ x \in M | x \leq m \}$, that these principal ideals are clearly D-ideals and that $m \rightarrow m^S$ is an embedding of M in $I_D(M)$. Now, considering M as an S-subsystem of $I_D(M)$, notice that S-distributive joins in M are preserved in $I_D(M)$.

It is clear that S itself is an S-system and we now restrict our attention to $HS(S)$, that is, to S-systems which are of the form A/\sim where A is an S-subsystem of S and \sim is a congruence relation on A. Notice that A is an ideal of S and \sim is a semigroup congruence on A (since we have assumed S to be commutative) and thus A/\sim is a semilattice as well as an S-system. It is easy to see that $(A/\sim)S = A/\sim$ and that the partial order on A/\sim as a semilattice coincides with the natural partial order of Lemma 1.

THEOREM. If $M \in HS(S)$, then $I_D(M)$ is the injective hull of M.

Proof. $M = A/\sim$ where $A \subseteq S$ is an ideal and \sim is a congruence relation on A. Denoting arbitrary elements of A/\sim by $[x]$ with $x \in A$, we have that $[a]S = Ma$ since $[a] = [as] = [asa] = [as]a$ and $[x]a = [xa] = [ax] = [a]x$. Since a D-ideal N is the join of the principal ideals it contains we have

$$N = \bigvee \{ [a]S \ | \ [a] \in N \} = \bigvee \{ N \cap Ma \ | \ [a] \in N \} \leq \bigvee \{ N \cap Ms \ | \ s \in S \} = \bigvee \{ Ns \ | \ s \in S \} \subseteq N.$$

Thus $N = \bigvee \{ Ns | s \in S \}$ for each $N \in I_D(M)$ so the hypotheses of Lemma 2 are satisfied and $I_D(M)$ is injective. Since the unary operations in $I_D(M)$ are given by $N^S = N \cap M^S$, for each $s \in S$, it is apparent that they preserve the order and are decreasing and that for each $[a] \in M$ we have $Na = N \cap Ma = N \cap [a]S$. Thus, by identifying M with the S-subsystem of $I_D(M)$ consisting of the principal order ideals of M, we see that the hypotheses of Lemma 3 are satisfied and that $I_D(M)$ is an essential extension of M.

Corollary 1. If $M \in HS(S)$, then M is injective if and only if it is a complete lattice in which arbitrary joins are S-distributive.

Proof. M is injective if and only if the embedding $m \rightarrow m^S$ of M in $I_D(M)$ is onto. This is true precisely when every D-ideal of M is principal. Clearly this is the case when M is a complete lattice in which arbitrary joins are S-distributive. Conversely, if every D-ideal is principal, then the partial ordering of $I_D(M)$ by set inclusion (under which $I_D(M)$ is a complete lattice with S-distributive joins) coincides with its natural partial order as an S-system, i.e., $m_1S \leq m_2S$ if and only if $m_1 = m_2s$ for some $s \in S$. Since in this case M is isomorphic to $I_D(M)$, M is also a complete lattice with S-distributive joins.
Corollary 2 (Berthiaume). If S is a chain, then its injective hull is its Dedekind-MacNeile completion.

Proof. If S is a chain, then every order ideal is a D-ideal and hence $ID(S)$ is the Dedekind-MacNeile completion.

Corollary 3. A semilattice S is injective in the category of semilattices if and only if it is injective in the category of S-systems.

Proof. By Corollary 1, S is injective in the category of S-systems if and only if it is a complete lattice with the property that $(\bigvee M)\wedge s = \bigvee \{m\wedge s \mid m \in M\}$ for all $s \in S$, $M \subseteq S$. By [2, Theorem 1] these properties characterize injectivity in the category of semilattices.

Corollary 4. A cyclic S-system is injective if and only if it is a complete lattice (in its natural partial order) in which arbitrary joins are S-distributive.

Proof. If M is a cyclic S-system, then $M = xS$ for some $x \in M$. It is clear that $MS = M$, so M has a natural partial order (Lemma 1). Define a congruence relation on S by $s_1 \sim s_2$ if and only if $xs_1 = xs_2$. The map $xS \rightarrow [s]$ is an isomorphism between M and S/\sim and hence $M \in HS(S)$ and Corollary 1 applies.

Corollary 5. Let M be an S-system such that $MS = M$. If for each $m \in M$ there exists an $s \in S$ such that $mS = Ms$, then M is injective if and only if it is a complete lattice in which arbitrary joins are S-distributive.

Proof. Define a congruence relation on S by $s_1 \sim s_2$ if and only if $Ms_1 = Ms_2$. The map $m \rightarrow [s]$, where $mS = Ms$, is an isomorphism between M and an S-subsystem of S/\sim. Since $SH(S) \subseteq HS(S)$ by [3, Theorem 1, p. 152], $M \in HS(S)$ and Corollary 1 applies.

References

Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403

Current address (McMorris): Biomathematics Program, Box 5457, North Carolina State University, Raleigh, North Carolina 27607