MINIMAL PRESENTATIONS FOR CERTAIN METABELIAN GROUPS

D. G. SEARBY AND J. W. WAMSLEY

Abstract. Let G be a finite p-group, $d(G) = \dim H^1(G, \mathbb{Z}/p\mathbb{Z})$ and $r(G) = \dim H^2(G, \mathbb{Z}/p\mathbb{Z})$. Then $d(G)$ is the minimal number of generators of G, and we say that G is a member of a class \mathscr{C}_p of finite p-groups if G has a presentation with $d(G)$ generators and $r(G)$ relations. The main result is that any outer extension of a finite cyclic p-group by a finite abelian p-group belongs to \mathscr{C}_p.

1. Introduction. Let G be a finite p-group. We have

$$d(G) = \dim H^1(G, \mathbb{Z}/p\mathbb{Z}) = \dim_{\mathbb{Z}_p} (G|G'^p),$$
$$r(G) = \dim H^2(G, \mathbb{Z}/p\mathbb{Z}),$$

d(G) being the minimal number of generators of G. If there is a presentation

$$G = F/R = \langle x_1, \ldots, x_n \mid R_1, \ldots, R_m \rangle$$

where F is the free group on $x_1, \ldots, x_n; n = d(G)$, and R is the normal closure in F of R_1, \ldots, R_m, we have always $m \geq r(G) = d(R/[F, R]R^p)$ (see, for example [2]). We say that G belongs to a class \mathscr{C}_p of finite p-groups if there is such a presentation with $n = d(G)$ and $m = r(G)$. Such a presentation is said to be minimal.

G is said to be an extension of a group K by H if H is a normal subgroup of G, and $G/H \cong K$. G is said to be an outer extension of K by H if G is an extension of K by H, and $d(G) = d(K) + d(H)$.

In this paper it is shown that if K is a finite cyclic p-group, and H is a finite abelian p-group, then any outer extension of K by H belongs to \mathscr{C}_p. The case $n=1$ has been covered in [2].

2. Basic lemmas.

Lemma 1. Let G be a finite p-group with presentation $G = F/R$ where $d(G) = d(F)$, and let $d(R/[F, R]R^p) = m$. If R_1, \ldots, R_m is any set of m elements of R, linearly independent in R modulo $[F, R]R^p$, and $K = F/S$ where S is the normal closure of R_1, \ldots, R_m in F; then G is the maximal...
p-factor group of K in the sense that if A is any finite p-group which is a factor group of K, then A is a factor group of G.

Proof. Let $\Gamma_k(F)$ be the kth term of the lower central series of F. Any p-factor group of $K=FS$ with class k and exponent $q=p^k$ will necessarily be a factor group of

$$K/(\Gamma_k(F)F^s) \cong (F/S)/(\Gamma_k(F)F^sS/S) \cong F/(\Gamma_k(F)F^sS).$$

Thus it will suffice to show that

$$R \subseteq \Gamma_k(F)F^sS$$

since if so then $F/(\Gamma_k(F)F^sS)$ is a factor group of $F/R=G$, and any p-factor of F/S will hence be a factor of G.

Let $U=[F,R]$ and let T be the normal closure of R^s in F; then $STU=R$ and $U=[R,F]=[STU,F] \subseteq [U,F]ST \subseteq [U,F,F]ST \subseteq \cdots$ so that $U \subseteq \Gamma_k(F)ST$ for all k. Now $T \subseteq F^s$ so that $UST=R \subseteq \Gamma_k(F)F^sS$ which establishes (1), and hence the lemma.

Corollary. Let $N=\{x_1, \ldots , x_n|R_1, \ldots , R_t\}$ where R_1, \ldots , R_t is any subset of R_1, \ldots , R_m. If N is a finite p-group, then $G \in \mathcal{G}_p$.

Proof. Let $H=\{x_1, \ldots , x_n|R_1, \ldots , R_m\}$, then H is a factor of N, so H is a finite p-group, and by the lemma, $H=G$.

Lemma 2. Let $G=F/R=\{x_1, \ldots , x_n|R_1, \ldots , R_m\}$ and $G/N=\{x_1, \ldots , x_n|R_1, \ldots , R_m, S_1, \ldots , S_t\}=F/S$. Then if $R_{i_1}, \ldots , R_{i_s}$ are linearly independent in S modulo $[F,S]S^p$, they are linearly independent in R modulo $[F,R]R^p$.

Proof. The natural mapping of $R/([F,R]R^p)$ into $S/([F,S]S^p)$ is clearly a homomorphism, and hence a linear transformation of the respective vector spaces.

Theorem 1. Let $K=\{x_1, \ldots , x_n|R_1, \ldots , R_m\}$ be a finite p-group, then $G=\{x_1, \ldots , x_n|R_1, \ldots , R_m, S_1, \ldots , S_t\}$ belongs to \mathcal{G}_p if

$$H=\{x_1, \ldots , x_n|R_1, \ldots , R_m, S_1, \ldots , S_t, T_1, \ldots , T_n\}$$

has a minimal presentation $H=\{x_1, \ldots , x_n|R_1, \ldots , R_m, U_1, \ldots , U_v\}$ for suitable U_i.

Proof. By Lemma 2, R_1, \ldots , R_m are linearly independent, and by Lemma 1 and the Corollary, $G \in \mathcal{G}_p$.

The following well-known theorem, which is stated without proof, is due to D. Epstein [1].

Theorem 2. If G is a finite abelian p-group with $d(G)=n$, then G has a minimal presentation with n generators and $\frac{1}{2}n(n+1)$ relations.
Let A be a finite abelian p-group generated by $\{a_1, \ldots, a_n\}$, and let $G = \langle a_1, \ldots, a_n, x | R_1, \ldots, R_m \rangle$ be any outer extension of a finite cyclic p-group by A. Then if $\phi(G)$ denotes the Frattini subgroup of G, since the extension is outer, $\phi(G) \cap A = \phi(A)$. If amongst the defining relations of G there occurs

$$xa_i x^{-1} = a_i^{a_{ii}} \cdots a_i^{a_{it}}$$

i.e. $xa_i x^{-1} a_i^{-1} = a_i^{a_{ii}} \cdots a_i^{a_{it}t-1} \cdots a_i^{a_{it}}$, then since $xa_i x^{-1} a_i^{-1} \in \phi(G)$,

$$a_i^{a_{ii}} \cdots a_i^{a_{it}t-1} \cdots a_i^{a_{it}} \in \phi(A) = A^p,$$

and thus $a_{ij} \equiv 0 \pmod{p}$ if $i \neq j$, and $a_{ii} \equiv 1 \pmod{p}$.

Lemma 3. Let

$$G = \langle a_1, \ldots, a_n, x | a_i^{m_i}, x^{-k} a_i^{a_{ii}} \cdots a_i^{a_{it}}, xa_i x^{-1} a_i^{a_{ii}} \cdots a_i^{a_{it}} \rangle$$

$(i = 1, \ldots, n); [a_i, a_j] (i > j)$,

where $m_i = p^{\delta_i}$, $k = p^\lambda$, $\lambda_i = k_i p^{\rho_i}$, $k_i \neq 0 \pmod{p}$, $a_{ij} \equiv 0 \pmod{p}$ if $i \neq j$, $a_{ii} \equiv 1 \pmod{p}$, be an outer extension of a finite cyclic p-group by a finite abelian p-group, for which $\{a_1, \ldots, a_n, x\}$ is a minimal generating set. Then G has a presentation

$$G = \langle b_1, \ldots, b_n, x | b_i^{m_i}w_i(p) (i < n), b_i^{m_i}, x^{-b_i^{t+1}} \rangle$$

$$xb_i x^{-1} b_i^{t+1} \cdots b_i^{t+1} (i < n), xb_i x^{-1} b_i^{t+1} \cdots b_i^{t+1} \rangle$$

$[b_i, b_j] (i > j, (i, j) \neq (n, 1)), b_i^{t+1} b_i^{-1} b_i^{m_n} b_i$,

where $m_i = p^{\delta_i}$, $w_i (p) \in \langle b_i^{t+1}, \ldots, b_i^{t+1} \rangle$, $k = p^\lambda$, $\pi_i = p^{\tau_i}$, $\pi_i = p^{\tau_i} (i > 1)$, $\{v_{ij}\}$ is some set of integers satisfying $v_{ij} \equiv 0 \pmod{p}$ if $i \neq j$, $v_{ii} \equiv 1 \pmod{p}$, p^μ is the exponent of G.

Proof. We may suppose $\delta_i \leq \delta_i$ for all i; set $\lambda_i = k_i p^{\rho_i - \delta_i}$ and $\pi_i = p^{\tau_i}$. Then $x^k = a_i^{a_{ii}} \cdots a_i^{a_{it}} \in (a_i^{a_{ii}} \cdots a_i^{a_{it}})^{v_{ij}} = b_i^{t+1}$. As $a_i^{a_{ii}} \not\equiv 0 \pmod{p}$, $\{b_1, a_2, \ldots, a_n, x\}$ is a generating set, $b_i^{t+1} \in \langle a_i^{a_{ii}} \cdots a_i^{a_{it}} \rangle$ and $[b_i, a_j] = 1$ for all i.

Now, let $i < n$, and suppose the required changes have been made for all $j \leq i$. Then

$$xb_i x^{-1} = b_i^{t+1} \cdots b_i^{t+1} (a_i^{a_{ii}} \cdots a_i^{a_{it}})^{v_{ii}} = b_i^{t+1} \cdots b_i^{t+1} (a_i^{a_{ii}} \cdots a_i^{a_{it}})^{v_{ii}}$$

as in the first step, where $a_i^{a_{ii}} \not\equiv 0 \pmod{p}$, $\pi_i = p^{\tau_i}$. Let b_{i+1} be the term inside the brackets. Then $\{b_1, \ldots, b_{i+1}, a_{i+2}, \ldots, a_n, x\}$ is a generating set, $b_i^{m_n} \equiv (a_i^{a_{ii}} \cdots a_i^{a_{it}}) (i < n-1$, otherwise $b_i^{m_n} = 1), xb_i x^{-1} = b_i^{t+1} \cdots b_i^{t+1} (a_i^{a_{ii}} \cdots a_i^{a_{it}}) b_i^{t+1}, [b_{i+1}, a_j] = 1$ for all j, and all the congruences on the $\{v_{ij}\}$ hold, since the change of generators does not change the Frattini subgroup, and the remarks immediately preceding this lemma still apply.
Thus by induction we construct b_1, \ldots, b_n satisfying the required relations. The process terminates at b_n, and we still have $xb_nx^{-1} = b_n^m \cdots b_n^{m_1}$. At this step we may go through the argument again, replacing each occurrence of $\langle a_1^p, \ldots, a_n^p \rangle$ by $\langle b_1^p, \ldots, b_n^p \rangle$. Clearly the order of each b_j is a power of p, because $b_j^m \in \langle b_{j+1}^p, \ldots, b_n^p \rangle$, $b_{j+1}^m \in \langle b_{j+2}^p, \ldots, b_n^p \rangle$, \ldots etc., and $b_n^m = 1$, each m_i being a power of p. Also, if the exponent of G is p^s, we may replace the defining relation $[b_n, b_1] = 1$ by $b_n b_1 = b_n^{m_1} b_1$, where $m = 1 + \lambda p^s$ for some positive integer λ. This completes the proof.

Note. In the above proof, v_{ij} may be replaced by $v_{ij} + sp^n$ for some integer s, and for all i and j.

Lemma 4. Let $A(t), B(t)$ and $C(t)$ be rational polynomials in t, μ a fixed nonzero integer, and K and L infinite sets of integers. Then it is possible to choose integers $k \in K$ and $\lambda \in L$ such that the polynomials $A(t)$ and $D(t) = \kappa B(t) + \lambda C(t) + \mu$ are coprime.

Proof. Let $A(t)$ be factorized over the rationals into irreducible factors $A_1(t), \ldots, A_r(t)$. For each i, $1 \leq i \leq r$, there are four possibilities:

(i) $A_i(t) | B(t)$ and $A_i(t) | C(t)$—then $A_i(t) | D(t)$ for all κ and λ.

(ii) $A_i(t) | B(t)$ and $A_i(t) | C(t)$—then there is at most one λ such that $A_i(t) | D(t)$, since if k_1 and k_2 have this property:

\[A_i(t) | \kappa_1 B(t) + \lambda_1 C(t) + \mu \quad \text{and} \quad A_i(t) | \kappa_2 B(t) + \lambda_2 C(t) + \mu, \]

hence $A_i(t) | (\kappa_1 - \kappa_2)B(t) + (\lambda_1 - \lambda_2)C(t)$ which is impossible unless $\lambda_1 = \lambda_2$.

(iii) $A_i(t) | B(t)$ and $A_i(t) | C(t)$—then there is at most one κ such that $A_i(t) | D(t)$—the proof is as for (ii).

(iv) $A_i(t) | B(t)$ and $A_i(t) | C(t)$—then for each $\kappa \in K$, there is at most one $\lambda \in L$ for which $A_i(t) | D(t)$ and conversely, since if, for $\kappa \in K$ and λ_1 and $\lambda_2 \in L$,

\[A_i(t) | \kappa B(t) + \lambda_1 C(t) + \mu \quad \text{and} \quad A_i(t) | \kappa B(t) + \lambda_2 C(t) + \mu, \]

then $A_i(t) | (\lambda_1 - \lambda_2)C(t)$, which is impossible unless $\lambda_1 = \lambda_2$. Similarly for the converse.

Now, define $K_1 \subset K$ by $\kappa \in K_1$ iff for some i, case (iii) applies, and $\kappa \in K$ is the unique integer permitted by the argument, and define $L_1 \subset L$ similarly. As K_1 and L_1 are finite, $K' = K - K_1$ and $L' = L - L_1$ are infinite, and clearly if $\kappa \in K'$ and $\lambda \in L'$, $A_i(t) | D(t)$ if (i), (ii) or (iii) applies. Choose any $\kappa \in K'$ and define $L_2 \subset L'$ by $\lambda \in L_2$ iff for some i, case (iv) applies and λ is the unique second member of the pair (κ, λ) permitted by the argument. Then L_2 is finite, so $L'' = L' - L_2$ is infinite, and by the construction, if $\kappa \in K'$, $\lambda \in L''$, then

\[A_i(t) | \kappa B(t) + \lambda C(t) + \mu \quad \text{for each} \quad i = 1, \ldots, r. \]

Hence $A(t)$ and $\kappa B(t) + \lambda C(t) + \mu$ are coprime.
Lemma 5. Let \(p, q_1, \ldots, q_r \) be distinct primes, then it is possible to find an integer \(k \) such that, for \(n > 0 \),
\[
(1 + kp^n)^n - 1 \not\equiv 0 \pmod{q_1, \ldots, q_r}.
\]

Proof. \(p^n \) is prime to \(q_1 \cdot \cdots \cdot q_r \), so by the division algorithm there exists an integer \(k \) such that \(kp^n \equiv -1 \pmod{q_1 \cdot \cdots \cdot q_r} \). Then
\[
(1 + kp^n)^n - 1 \equiv -1 \pmod{q_1 \cdot \cdots \cdot q_r}
\]
so
\[
(1 + kp^n)^n - 1 \equiv -1 \pmod{q_1, \ldots, q_r}.
\]

3. The main theorem.

Theorem 3. Let
\[
G = \{a_1, \ldots, a_n, x \mid a_i^{m_i}, x^{-k}a_1^{11} \cdots a_n^{11}, xa_i^{-1}x^{-1}a_i^{11} \cdots a_n^{11} (i = 1, \ldots, n); [a_i, a_j] (i > j)\}
\]
where \(m_i = p^{\beta_i}, k = p^\delta, \lambda_i = k, \mu_i \equiv 0 \pmod{p}, \alpha_{ij} \equiv 0 \pmod{p} \) if \(i \neq j \), \(\alpha_{ii} \equiv 1 \pmod{p} \), be any outer extension of a finite cyclic \(p \)-group by a finite abelian \(p \)-group for which \(d(G) = n + 1 \). Then \(G \in \mathcal{S}_p \).

Proof. By Lemma 3, \(G \) has a presentation
\[
G = \{b_1, \ldots, b_n, x \mid x^{-k}b_1^{11} \cdots b_n^{11}, x b_1^{11} \cdots x b_n^{11} [b_i, b_j] (i > j, (i, j) \neq (n, 1)), b_1^{-1} b_n^{-1} b_n^{11}, b_n^{11} \}
\]
where \(k = p^\delta, \tau_1 = p^{\beta_1}, \tau_i = p^{\alpha_i} (i > 1), v_{ij} \equiv 0 \pmod{p} \) if \(i \neq j \), \(v_{ii} \equiv 1 \pmod{p} \), \(m = 1 + \lambda p^n, m_i = p^{\tau_i}, m_i (p) \in \{b_1^{11}, \ldots, b_n^{11}\} \). We abbreviate this presentation to
\[
G = \{b_1, \ldots, b_n, x \mid R_1, \ldots, R_t, b_n^{11} w_1 (p) (i < n), b_n^{11}\}.
\]
With this notation we define
\[
K = \{b_1, \ldots, b_n, x \mid R_1, \ldots, R_t\},
\]
and
\[
H = \{b_1, \ldots, b_n, x \mid R_1, \ldots, R_t, b_n^{11} w_1 (p) (i < n), b_n^{11} b_j^7 (j = 1, \ldots, n)\}.
\]
Now \(H \) is an elementary abelian group, and by Theorem 2, has a minimal presentation with \(\frac{1}{2} (n + 1)(n + 2) \) relations—but \(t = 1 + n + C_n^2 = \frac{1}{2} (n + 1) \times (n + 2) - n \), so \(H \) has a minimal presentation
\[
H = \{b_1, \ldots, b_n, x \mid R_1, \ldots, R_t, b_j^7 (j = 1, \ldots, n)\},
\]
and \(H \in \mathcal{S}_p \). Thus \(R_1, \ldots, R_t \) are linearly independent, and to apply
Theorem 1 and thereby prove the theorem, it remains only to show that for a suitable choice of \(\nu_i \) and \(\lambda \), \(H \) is a \(p \)-group.

We have \(x^i=b_1^i \) so \(x b_1^{-i} x^{-1}=b_1^{-i} \), which implies \(b_i^{(v_{i-1}) x^{-1} x^{x_{i+1}}} b_1^{x_i}=1 \),

\[
x b_1^{x_i} x^{-1} = x b_1^{(1-v_{i-1}) x^{-1} x^{x_{i+1}}} b_1^{x_i} = b_2^{x_i},
\]

which implies \(b_1^{(v_{i-1}) x_{i+1} b_2^{x_i-1} x_{i+1}} b_1^{x_i}=1 \). We continue as in the last step for \(b_3, \ldots, b_{n-2} \), obtaining \(x b_2^{x_{n-2} x_{n-1} x^{-1}} b_2^{x_{n-2} x_{n-1}} = b_2^{x_{n-2} x_{n-1}} \) which implies

\[
b_1^{v_{n-2} x_{n-2} x_{n-1}} \ldots b_1^{(v_{n-2} x_{n-1}) x_{n-1}} b_2^{x_{n-2} x_{n-1}}=1.
\]

For \(b_{n-1} \) we recall that \(b_n b_1=b_1 b_n \) applies, and we derive

(i) \(b_1^{v_{n-1} x_{n-1}} b_2^{v_{n-2} x_{n-2} x_{n-1}} \ldots b_1^{v_{n-1} x_{n-1}} b_2^{x_{n-2} x_{n-1}}=1. \)

From this and the preceding equations, \(b_1^{x_i} \in \text{gp}(b_1) \), so \(b_1^{x_i} \in \text{gp}(b_1) = \text{gp}(x^i) \) so that \(x b_1^{x_i} x_{i+1} b_1^{x_i}=x_{i+1} b_1^{x_i} \), and

(ii) \(b_1^{v_{n-1} x_{n-1}} b_2^{v_{n-2} x_{n-2} x_{n-1}} \ldots b_1^{v_{n-1} x_{n-1}} b_2^{x_{n-2} x_{n-1}}=1. \)

where in (i) and (ii), \(S(m) \) and \(T(m) \) are polynomials in \(m \), which are independent of \(\nu_{n}, \nu_{n-1} \) and \(\nu_{n-1} \). From (i) and (ii) and earlier derivations, we may derive

\[
b_1^{x_{n-1}} b_2^{v_{n-2} x_{n-2} x_{n-1}} \ldots b_1^{v_{n-1} x_{n-1}} b_2^{x_{n-2} x_{n-1}}=1.
\]

where \(c_1 \) and \(c_2 \) are nonzero integers independent of \(\nu_{n} \). Thus

\[
b_1^{v_{n-1} x_{n-1}} b_2^{v_{n-2} x_{n-2} x_{n-1}} \ldots b_1^{v_{n-1} x_{n-1}} b_2^{x_{n-2} x_{n-1}}=1.
\]

By suitable choice of \(\nu_{n} \) we may ensure that

\[
c_3 = (\nu_{n} - 1) c_1 - c_2
eq 0;
\]

then \(b_1^{\psi(m)}=1 \), where \(\psi(m)=(\nu_{n} - 1) c_1 - c_2 T(m)+c_2. \)

Also, from (i): \(b_n b_1 b_n^{-1}=b_1 \), so \(b_n^{x} b_1 b_n^{-x}=b_1^{x} \). If we put \(\sigma=p^{x_i} x_{i+1} \), then \(b_1^{x} \) is a power of \(b_1 \), so \(b_n^{x} b_1 b_n^{-x}=b_1 \), and we have

(iii) \(b_1^{m^x-1}=1, \quad b_1^{\psi(m)}=1, \)

so that \(|b_1| \) is the greatest common divisor of \(m^x-1 \) and \(\psi(m) \). Now \(S(m) \) and \(T(m) \) are independent of \(\nu_{n-1} \) and \(\nu_{n} \), so that by Lemma 4 we can choose these coefficients so that the polynomials have no common factor containing \(m \).

Now if two polynomials are coprime in this sense, the Euclidean algorithm shows that it is possible to find a linear combination of them which is an integer, say \(q_1 \cdots q_k p^n \) if \(|b_1| \) divides \(m^x-1 \) and \(\psi(m) \), then it must divide this number, whence, since \(m=1+\lambda p^n \), by Lemma 5 it is possible to choose \(\lambda \) such that \(m^x-1 \) is prime to \(q_1, \ldots, q_k \). From
this we deduce that $|b_1|$ is a power of p, and thus that the order of every generator is p-power.

Thus K is a finite p-group, and by the earlier remarks, this is sufficient to complete the proof.

REFERENCES

SCHOOL OF MATHEMATICS, THE FLINDERS UNIVERSITY OF SOUTH AUSTRALIA, BEDFORD PARK, SOUTH AUSTRALIA