A CONVERGENCE THEOREM FOR LIMITÄRPERIODISCH T-FRACTIONS OF RATIONAL FUNCTIONS

KARI HAG

Abstract. We prove that a limitärpériodisch T-fraction, which corresponds to a rational function, converges (locally uniformly) to the original function in a certain domain.

1. Introduction. The sequence \(\{A_n(z)/B_n(z)\}\) obtained by the rule

\[
\frac{A_n(z)}{B_n(z)} = 1 + d_0 z + \frac{z}{1 + d_1 z + \cdots + 1 + d_n z}
\]

is called a T-fraction (see [5]). Moreover, the T-fraction is called limitärpériodisch if the sequence \(\{d_n\}\) converges.

The T-fraction is said to converge for a certain \(z\)-value, if for that particular value

\[
\lim_{n \to \infty} \left(1 + d_0 z + \frac{z}{1 + d_1 z + \cdots + 1 + d_n z} \right)
\]

exists in \(C\).

The T-fraction is said to correspond to the power series (*) \(1 + \sum_{n=1}^{\infty} c_n z^n\) if (*) agrees with the power series expansion of \(A_n(z)/B_n(z)\) up to and including the term \(c_{k(n)} z^{k(n)}\), where \(k(n)\to\infty\) as \(n\to\infty\).

For every formal power series \(1 + \sum_{n=1}^{\infty} c_n z^n\), and thus for every function \(f_0\), holomorphic in some region containing the origin, and normalized by \(f_0(0)=1\), there is exactly one corresponding T-fraction.

(A proof is given in [5].)

Starting with the function \(f_0\), we obtain the T-fraction expansion in the following way:

Let \(\{f_n\}\) be the sequence of functions, defined by

\[
f_n(z) = 1 + (f_n'(0) - 1)z + \frac{z}{f_{n+1}(z)}, \quad z \neq 0, n = 0, 1, 2, \cdots,
\]

\[
f_{n+1}(0) = 1.
\]
With
\[d_n = f'_n(0) - 1, \quad n = 0, 1, 2, \ldots \]
the continued fraction (1) is the \(T \)-fraction of \(f_0 \).

Due to the linearity of the elements of the \(T \)-fraction a great deal can be said about the convergence. Several convergence theorems are proved in [2], [3], and [5]. The criteria are given in terms of conditions on the sequence \(\{d_n\} \). A different kind of result is proved in [6], where convergence properties of the \(T \)-fraction expansion is concluded from boundedness conditions of the function. A step in the proof is to establish the following lemma (see [6, p. 8]):

Lemma 1. Let \(f_0 \) be holomorphic in \(|z| < 1 \), normalized by \(f_0(0) = 1 \), and such that the function \(f_n \), defined in (2) all are holomorphic in \(|z| < 1 \). Further, let \(f_0 \) have a \(T \)-fraction expansion where \(d_n \to -1 \) as \(n \to \infty \). Then the \(T \)-fraction of \(f_0 \) converges to \(f_0 \) uniformly on any compact subset of the open unit disk.

For rational \(f_0 \) this result can be extended in the following way (announced in [1]):

2. **The main result.**

Theorem 1. Let \(f_0 \) be a rational function normalized by \(f_0(0) = 1 \) and with \(\text{limitärperiodisch} \) \(T \)-fraction. Take an arbitrary \(\theta \in (0, 1) \) and let \(D_\theta \) denote the disk \(\{z; |z| \leq \theta\} \). Remove from \(D_\theta \) arbitrary neighborhoods of the poles of \(f_0 \) in \(D_\theta \). Then the \(T \)-fraction of \(f_0 \) converges to \(f_0 \) uniformly on the remaining set \(D_\theta^* \).

Remark 1. In this theorem the interval \((0, 1) \) cannot be replaced by \((0, r) \) where \(r \geq 1 \), as may be seen from the classic example \(f_0 = 1 \). (The \(T \)-fraction of this function has the form
\[
1 - z + \frac{z}{1 - z + \cdots + \frac{z}{1 - z + \cdots}}
\]
and converges in \(|z| < 1 \) to 1, in \(|z| > 1 \) to \(-z\) and diverges on the unit circle, except for \(z = -1 \), where it converges to 1).

Remark 2. The existence of an uncountable set of rational functions with nontrivial \(\text{limitärperiodisch} \) \(T \)-fractions is proved in [1]. Applying the functions used in this proof we can prove the existence of (an uncountable set of) rational functions with poles in \(|z| < 1 \) and with nontrivial \(\text{limitärperiodisch} \) \(T \)-fractions.

For such functions the \(T \)-fraction expansion converges in a larger domain than the power series expansion. To prove Theorem 1 we state some
3. Preliminary results. From now on we consider a normalized rational function \(f_0 \), i.e. let \(f_0 \) in §1 be given by the formula

\[
f_0(z) = \frac{1 + \sum_{k=1}^{m_0} \beta_k^{(-1)} z^k}{1 + \sum_{k=1}^{m_0} \beta_k^{(0)} z^k},
\]

where \(\beta_k^{(-1)} \), \(\beta_k^{(0)} \) are arbitrary (complex) constants, and let \(\{f_n\} \) and \(\{d_n\} \) be the sequences defined in (2) and (3) respectively. Then, for \(n=1, 2, 3, \cdots \), we have

\[
f_n(z) = \frac{1 + \sum_{k=1}^{m_0} \beta_k^{(n-1)} z^k}{1 + \sum_{k=1}^{m_0} \beta_k^{(n)} z^k},
\]

where the constants \(\beta_k^{(n)} \) are given by certain recursion formulas (see [1]).

Furthermore we shall need some well-known recursion formulas from the theory of continued fractions. Specializing to the present case and using the notation from §1, we have

\[
A_n(z)B_{n-1}(z) - A_{n-1}(z)B_n(z) = (-1)^{n-1} z^n,
\]

\[
A_m(z)/B_m(z)
\]

\[
= \left(A_{n-1}(z) \left[1 + d_n z + \frac{z}{1 + d_n z + \cdots + 1 + d_m z} + z A_{n-2}(z) \right] \right)
\]

\[
\cdot \left(B_{n-1}(z) \left[1 + d_n z + \frac{z}{1 + d_n z + \cdots + 1 + d_m z} + z B_{n-2}(z) \right] \right)^{-1}.
\]

where \(A_k(z) \) and \(B_k(z) \) are polynomials, given by the recursion formulas

\[
A_{-1}(z) = 1, \quad B_{-1}(z) = 0, \quad A_0(z) = 1 + d_0 z, \quad B_0(z) = 1,
\]

\[
A_n(z) = (1 + d_n z)A_{n-1}(z) + z A_{n-2}(z), \quad B_n(z) = (1 + d_n z)B_{n-1}(z) + z B_{n-2}(z), \quad n = 1, 2, 3, \cdots .
\]

Immediately from (1), (2), and (8) it follows inductively

\[
A_{n-1}(z)f_n(z) + z A_{n-2}(z) = f_0(z)f_1(z) \cdots f_n(z),
\]

\[
B_{n-1}(z)f_n(z) + z B_{n-2}(z) = f_1(z)f_2(z) \cdots f_n(z),
\]

and in particular,

\[
f_0(z) = \frac{A_{n-1}(z)f_n(z) + z A_{n-2}(z)}{B_{n-1}(z)f_n(z) + z B_{n-2}(z)}.
\]

Finally we rephrase Theorem 2.42 in [4] as

Theorem 2. Let \(\{a_n\} \) and \(\{b_n\} \) be two sequences of complex-valued functions of the complex variable \(z \), defined in some region \(R \), and assume
that they converge uniformly in R to limit functions a and b respectively. Assume further the existence of a positive $\delta < 1$ and two positive numbers c and C, such that, in the whole region R, $c \leq |p_1| \leq C$, $|p_2| p_1 \leq \delta$, where p_1 and p_2 denote the roots of the quadratic equation $p^2 - b p - a = 0$. Then there is an N, such that for $n \geq N$ the continued fraction

$$
\frac{a_{n+1}(z)}{b_{n+1}(z)} + \frac{a_{n+2}(z)}{b_{n+2}(z)} + \cdots
$$

converges uniformly in R to a finite-valued limit function.

Proof of Theorem 1. (The first part of the proof is almost identical to the first part of Waadeland’s proof of Lemma 1, while the second part strongly depends on the present conditions.)

Let

$$
1 + d_0 z + \frac{z}{1 + d_1 z + \cdots + 1 + d_n z + \cdots}
$$

be the T-fraction of f_0. By the hypothesis $\{d_n\}$ is convergent, and from Theorem 1 of [1] we know $d_n \to -1$ as $n \to \infty$. Therefore, putting $a_n(z) = z$, $b_n(z) = 1 + d_n z$, and $R = \{z; |z| < \theta\}$ with $\theta \in (\theta, 1)$, we see that the convergence conditions of Theorem 2 are satisfied. Furthermore the inequalities are obviously valid since $p_1(z) = 1$ and $p_2(z) = -z$ in the present case. Thus we conclude that there exists a number N such that for $n \geq N$ the T-fraction of f_n,

$$
1 + d_n z + \frac{z}{1 + d_{n+1} z + 1 + d_{n+2} z + \cdots},
$$

converges uniformly on D_θ to a limit function g (finite-valued). We assert that $g = f_n$ (restricted to D_θ). Proof of this: The uniform convergence of the approximants of

$$
1 + d_n z + \frac{z}{1 + d_{n+1} z + 1 + d_{n+2} z + \cdots}
$$

implies, by local considerations, the continuity of g (finite-valued). In particular g is bounded on D_θ, which in turn implies uniform boundedness of the sequence of approximants and thus regularity of

$$
1 + d_n z + \frac{z}{1 + d_{n+1} z + \cdots + 1 + d_m z}
$$
on D_θ for all $m \geq M$ for some M. By Weierstrass we conclude that g is holomorphic in $|z| < \theta$ and, for $k = 1, 2, 3, \cdots$,

$$
g^{(k)}(0) = \lim_{m \to \infty} \frac{d^k}{dz^k} \left[1 + d_n z + \frac{z}{1 + d_{n+1} z + \cdots + 1 + d_m z} \right]_{z=0}.
$$
On the other hand, from the correspondence between \(f_n(z) \) and (12) we have
\[
\lim_{m \to \infty} \frac{1}{d_k} \left[1 + d_n z + \frac{z}{1 + d_{n+1} z + \cdots + 1 + d_m z} \right] = f_n^{(k)}(0),
\]
\(k = 1, 2, 3, \ldots \) (see Theorem 2.1 in [5]).

This agreement in Maclaurin series expansion of \(f_n \) and \(g \) shows that \(f_n \) agrees with \(g \) on \(D_\theta \).

To finish the proof of the theorem, fix \(n \geq N \) and consider \(m \geq M \). We shall find it convenient to define functions \(r_m \) on \(D_\theta \) given by the formulas
\[
r_m(z) = 1 + d_n z + \frac{z}{1 + d_{n+1} z + \cdots + 1 + d_m z} - f_n(z).
\]
Thus, from (7) and (11) the following holds in \(D_\theta^* \):
\[
\begin{align*}
|f_0(z) - A_m(z)/B_m(z)| &= \left| (z r_m(z)(A_{n-2}(z)B_{n-1}(z) - A_{n-1}(z)B_{n-2}(z)) \right| \\
&= \left| (B_{n-1}(z) f_n(z) + z B_{n-2}(z))(B_{n-1}(z) (f_n(z) + r_m(z)) + z B_{n-2}(z))^{-1} \right|.
\end{align*}
\]

Applying (6), we finally get
\[
|f_0(z) - A_m(z)/B_m(z)| = (|r_m(z)| |z^n|)
\cdot \left| (B_{n-1}(z) f_n(z) + z B_{n-2}(z)| B_{n-1}(z)(f_n(z) + r_m(z)) + z B_{n-2}(z))^{-1} \right|.
\]

We know that \(r_m \) converges to 0 uniformly on \(D_\theta \). Since \(B_{n-1}, B_{n-2}, \) and \(f_n \) are holomorphic in \(D_\theta \), we are done if we can show that \(G \) defined by
\[
G(z) = B_{n-1}(z) f_n(z) + z B_{n-2}(z)
\]
has all its zeros among the poles of \(f_0 \). This, however, follows easily if we combine (5) and (10):
\[
B_{n-1}(z) f_n(z) + z B_{n-2}(z) = \frac{1 + \sum_{k=1}^{m} \beta_k^{(0)} z^k}{1 + \sum_{k=1}^{m} \beta_k^{(n)} z^k}.
\]

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TRONDHEIM, TRONDHEIM, NORWAY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104