Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Constructions of disjoint Steiner triple systems


Author: Jean Doyen
Journal: Proc. Amer. Math. Soc. 32 (1972), 409-416
MSC: Primary 05B05
DOI: https://doi.org/10.1090/S0002-9939-1972-0295928-2
MathSciNet review: 0295928
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {D^ \ast }(v)$ denote the maximum number of pairwise disjoint and isomorphic Steiner triple systems of order v. The main result of this paper is a lower bound for $ {D^\ast}(v)$, namely $ {D^\ast}(6t + 3) \geqq 4t - 1$ or $ 4t + 1$ according as $ 2t + 1$ is or is not divisible by 3, and $ {D^ \ast }(6t + 1) \geqq t/2$ or t according as t is even or odd. Some other related problems are studied or proposed for study.


References [Enhancements On Off] (What's this?)

  • [1] W. Ahrens, Mathematische Unterhaltungen und Spiele. Vol. 2, Teubner, Leipzig, 1918.
  • [2] E. F. Assmus, Jr. and H. F. Mattson, Jr., Steiner systems and perfect codes, University of North Carolina Institute of Statistics Mimeo Series, No. 484-1, 1966.
  • [3] -, Research problem, J. Combinatorial Theory 3 (1967), 307.
  • [4] S. Bays, Une question de Cayley relative au problème des triades de Steiner, Enseignement Math. 19 (1917), 57-67.
  • [5] R. C. Bose, On the construction of balanced incomplete block designs, Ann. Eugenics 9 (1939), 353–399. MR 0001221
  • [6] A. Cayley, On the triadic arrangements of seven and fifteen things, London, Edinburgh and Dublin Philos. Mag. and J. Sci. (3) 37 (1850), 50-53 (Collected Mathematical Papers, I, 481-484).
  • [7] Jane W. Di Paola, Steiner triples and totally non-symmetric loops, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) Gordon and Breach, New York, 1970, pp. 59–61. MR 0263659
  • [8] D. H. Doehlert, Balanced sets of balanced incomplete block designs of block size three, Technometrics 7 (1965), 561-577.
  • [9] Arnold Emch, Triple and multiple systems, their geometric configurations and groups, Trans. Amer. Math. Soc. 31 (1929), no. 1, 25–42. MR 1501465, https://doi.org/10.1090/S0002-9947-1929-1501465-6
  • [10] Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967. MR 0224481
  • [11] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191-204.
  • [12] -, Note on an unanswered prize question, Cambridge and Dublin Math. J. 5 (1850), 255-262.
  • [13] -, Theorems on combinations, Cambridge and Dublin Math. J. 8 (1853), 38-45.
  • [14] E. Lucas, Récréations mathématiques. Vol. 2, Gauthier-Villars, Paris, 1883.
  • [15] Rose Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939), 251–257 (German). MR 1557027
  • [16] Alexander Rosa, A note on cyclic Steiner triple systems, Mat.-Fyz. Časopis Sloven. Akad. Vied 16 (1966), 285–290 (Slovak, with English summary). MR 0211884
  • [17] Th. Skolem, Some remarks on the triple systems of Steiner, Math. Scand. 6 (1958), 273–280. MR 0106852, https://doi.org/10.7146/math.scand.a-10551
  • [18] J. J. Sylvester, Remark on the tactic of nine elements, London, Edinburgh and Dublin Philos. Mag. and J. Sci. (4) 22 (1861), 144-147 (Collected Mathematical Papers, II, 286-289).
  • [19] -, Note on a nine schoolgirls problem, Messenger Math. (2) 22 (1892/93), 159-160; correction, 192 (Collected Mathematical Papers, IV, 732-733).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B05

Retrieve articles in all journals with MSC: 05B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0295928-2
Keywords: Steiner triple systems, balanced incomplete block designs
Article copyright: © Copyright 1972 American Mathematical Society