Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An exact sequence calculation for the second homotopy of a knot


Author: M. A. Gutiérrez
Journal: Proc. Amer. Math. Soc. 32 (1972), 571-577
MSC: Primary 55A25
DOI: https://doi.org/10.1090/S0002-9939-1972-0322848-7
MathSciNet review: 0322848
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the computation of the second homotopy group of a knot, cancelling the action of the commutator subgroup of the fundamental group.


References [Enhancements On Off] (What's this?)

  • [1] W. Browder, Surgery of simply connected manifolds, Princeton University, Princeton, N.J., 1969 (mimeographed notes).
  • [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [3] R. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168-176. MR 25 #3523. MR 0140100 (25:3523)
  • [4] S. T. Hu, Homotopy theory, Pure and Appl. Math., vol. 8, Academic Press, New York, 1959. MR 21 #5186. MR 0106454 (21:5186)
  • [5] M. A. Kervaire, On higher dimensional knots, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965. MR 31 #2732. MR 0178475 (31:2732)
  • [6] J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9-16. MR 31 #4045. MR 0179803 (31:4045)
  • [7] -, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 34 #808. MR 0200922 (34:808)
  • [8] S. J. Lomonaco, Jr., The second homotopy group of a spun knot, Topology 8 (1969), 95-98. MR 38 #6594. MR 0238318 (38:6594)
  • [9] L. P. Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N.J., 1965. MR 31 #734. MR 0176462 (31:734)
  • [10] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294. MR 15, 548. MR 0059548 (15:548c)
  • [11] J. R. Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541-543. MR 28 #2139. MR 0158917 (28:2139)
  • [12] D. W. Sumners, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240 MR 40 #6531. MR 0253316 (40:6531)
  • [13] D. W. Sumners and J. Andrews, On higher dimensional fibered knots, Trans. Amer. Math. Soc. 153 (1971), 415-426. MR 0271927 (42:6808)
  • [14] H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464-498. MR 26 #761. MR 0143201 (26:761)
  • [15] H. J. Zassenhaus, The theory of groups, 2nd ed., Chelsea, New York, 1958. MR 19, 939. MR 0091275 (19:939d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25

Retrieve articles in all journals with MSC: 55A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0322848-7
Keywords: Homotopy group, commutator subgroup, covering space, Mayer-Vietoris sequence, minimal Seifert manifold
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society