GENERALIZED RAMSEY THEORY FOR GRAPHS. II. SMALL DIAGONAL NUMBERS
VÁCLAV CHVÁTAL AND FRANK HARARY

Abstract. Consider a finite nonnull graph G with no loops or multiple edges and no isolated points. Its Ramsey number $r(G)$ is defined as the minimum number p such that every 2-coloring of the lines of the complete graph K_p must contain a monochromatic G. This generalizes the classical diagonal Ramsey numbers $r(n, n) = r(K_n)$. We obtain the exact value of the Ramsey number of every such graph with at most four points.

1. A celebrated Putnam question. The following question (see [3]) was already well known to most of those who knew it. Independently, it found its way into a Putnam examination where it attracted much attention:

"Prove that at a gathering of any six people, some three of them are either mutual acquaintances or complete strangers to each other."

Stated in the natural language [5] of graph theory, this asserts that whenever each of the 15 lines of the complete graph K_6 is colored either green or red, there is at least one monochromatic triangle.

Actually, there are at least two such triangles, as proved by Goodman [3]. Since we cannot color the lines of a graph green and red, we use solid and dashed lines instead in all the figures.

We proposed in [1] the more general approach of 2-coloring the lines of any graph G and investigating whether there must occur a monochromatic copy of a specified subgraph F. Henceforth, a 2-coloring of G will mean a coloration of the lines of G with the two colors green and red.

A simple example (Figure 1) illustrating this viewpoint is obtained when we set $G = C_5$ and $F = P_3$. Whenever one colors the five lines of C_5 with two colors, there must obviously occur a monochromatic P_3.

\[C_5:\]
\[P_3:\]

Figure 1.
2. The diagonal Ramsey numbers. The diagonal Ramsey number \(r(n, n) \) is defined [5, p. 16] as the smallest \(p \) such that in any 2-coloring of the complete graph \(K_p \), there always occurs a monochromatic \(K_n \).

Generalizing this concept, we now define the Ramsey number \(r(F) \) for any graph \(F \) with no isolated points. The value of \(r(F) \) is the smallest \(p \) such that in every 2-coloring of \(K_p \), there always occurs a monochromatic \(F \).

(This definition of \(r(F) \) coincides with that of \(r(F, 2) \) introduced in [2].) In particular, we have \(r(n, n) = r(K_n) \), and trivially \(r(K_2) = 2 \). The Putnam problem mentioned above amounts to showing that \(r(K_3) \leq 6 \). In fact, \(r(K_3) = 6 \) because the ten lines of \(K_5 \) can be colored green and red in such a manner that no monochromatic \(K_3 \) occurs. There is only one such 2-coloring (Figure 2), namely that which gives rise to a red \(C_5 \) and a green \(C_5 \) (pentagon and pentagram).

![Figure 2.](image)

Greenwood and Gleason [4] proved that \(r(K_5) = 18 \) by (a) producing a 2-coloring of \(K_{17} \) which has no monochromatic \(K_5 \), and (b) showing elegantly that every 2-coloring of \(K_{18} \) does contain such a \(K_5 \). Although upper and lower estimations for \(r(K_n) \) are known, the exact values of \(r(K_n) \) with \(n \geq 5 \) are still entirely open. Thus the determination of \(r(F) \) for the graphs with at most four points would bring us just up to \(r(K_5) \). It is our object to calculate \(r(F) \) exactly for these small graphs.

3. All stars. The Ramsey numbers of the stars are

\[
\begin{align*}
r(K_{1,m}) &= 2m, & m \text{ odd}, \\
 &= 2m - 1, & m \text{ even}.
\end{align*}
\]

(1)

We first prove (1) for odd \(m \). In this case, there is a regular graph \(G \) of degree \(m - 1 \) having \(2m - 1 \) points, so its complement \(G' \) is regular of degree \(m - 1 \). Hence the decomposition (2-coloring) of \(K_{2m-1} \) into \(G \) and \(G' \) shows that \(r(K_{1,m}) \geq 2m \). The equality holds for in any 2-coloring of \(K_{2m} \), the green and red degrees of each point \(u \) sum to \(2m - 1 \), whence one of these degrees is at least \(m \).
When m is even, if there is a 2-coloring of K_{2m-1} without a monochromatic star $K_{1,m}$, then both the green and red degree of each point equal $m-1$. But then the green graph is regular of degree $m-1$, which is a contradiction as both $m-1$ and $2m-1$ are odd. Thus we have $r(K_{1,m}) \leq 2m-1$. The equality follows from a decomposition of K_{2m-2} into G and G, where G is a regular graph of degree $m-1$ with $2m-2$ points.

4. Small generalized Ramsey numbers. There are exactly ten graphs F (Figure 3) with at most 4 points, having no isolates. We now find $r(F)$ for each of these. For convenience in identifying them, we use the operations on graphs from [5, p. 21], to get a symbolic name for each.

We have already seen that $r(K_2)=2$, $r(K_3)=6$ and $r(K_4)=11$. Setting $m=2$ and $m=3$ in (1), we obtain $r(K_{1,2})=3$ and $r(K_{1,3})=6$. Thus there are just five more graphs to investigate: $2K_2$, P_4, C_4, $K_{1,3}+x$ and K_4-x.

$r(2K_2)=5$. There is a 2-coloring of K_5 (Figure 4) with no monochromatic $2K_2$. On the other hand, it is ridiculously simple to verify that there is no such 2-coloring of the cycle C_5, a fortiori of K_5.

$r(P_4)=5$. By coincidence, Figure 4 shows that $r(P_4)>4$. We now exploit the fact, just noted, that every 2-coloring of K_5 has a monochromatic $2K_2$. Let u_1u_2 and v_1v_2 be two independent green lines in K_5. While trying to avoid a green P_4, we must color all four lines u_1v_1, red, thus producing an all red P_4, namely $u_1v_1u_2v_2$.

$r(C_4)=6$. Luckily, Figure 2 shows that $r(C_4)>5$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Now assume there is a 2-coloring of K_6 with no monochromatic 4-cycle, C_4. As we already have $r(K_3)=6$, there is a (say) green triangle $u_1u_2u_3$ in K_6. Let v_1, v_2, v_3 be the other points. From each v_i, there is at most one green line to this green triangle, for otherwise, we have a green C_4. We now show that from each v_i, there is exactly one green line to the triangle. If not, all three lines u_iv_i are red. But then the fact that at least two lines u_iv_2 are red gives a red C_4, like $v_1u_2v_2u_3v_1$. Next we rule out the possibility that there is more than one green line from any u_i to the v_j, as shown in Figure 5(a) for u_2. This is seen from the red lines in Figure 5(b) which are forced while trying to avoid a green C_4.

![Figure 5](image1)

Now we know that there are green lines in this K_6 which must look like Figure 6, with no other green u_iv_j lines.

![Figure 6](image2)

Clearly all the lines v_iv_j are red. And now we have got it, because $v_1v_2v_3u_2v_1$ is a red C_4.

$r(K_{1,3}+x)=7$. The 2-coloring of K_6 in which $2K_3$ is red and $K_{3,3}$ is green (Figure 7) shows that $r(K_{1,3}+x)>6$. To prove that $r(K_{1,3}+x)=7$, we will show that it is impossible to have a 2-coloring of K_7 without a monochromatic $K_{1,3}+x$. To begin, we know by $r(K_3)=6$ that K_7 has (say) a green K_3 with points u_1, u_2, u_3. Call the other points v_1 to v_4. To avoid an immediate green $K_{1,3}+x$, we need to color all 12 lines u_iv_j red (obtaining a
red \(K_{3,4} \). Next to avoid a sudden red \(K_{1,3} + x \), all 6 of the lines \(v_i v_j \) must be green. But behold we have a green \(K_4 \), hence a fortiori a green \(K_{1,3} + x \).

\(r(K_4 - x) = 10 \). If one stumbles on the correct example quickly (we did not), it is not at all difficult to see that \(r(K_4 - x) > 9 \). This example, which we believe to be the unique correct 2-coloring of \(K_9 \), is given by taking the cartesian product \(K_3 \times K_3 \) of two triangles as the green subgraph. Figure 8 shows only the green lines; those which are absent are red. Clearly, neither \(K_3 \times K_3 \) nor its complement contains \(K_4 - x \).

We now prove that \(r(K_4 - x) = 10 \). Consider an arbitrary 2-coloring of \(K_{10} \). By (1), there is a monochromatic (say green) \(K_{1,5} \), or in other words a point \(u \) adjacent greenly to 5 points \(u_i \), \(i = 1 \) to 5. We can now ignore the other four points and concentrate on the 10 lines \(u_i u_j \). There are two possibilities. If there is a green \(P_3 \) on the points \(u_i \), say \(u_4 u_5 u_6 \), then these 2 lines together with the 3 lines \(u_j u_i, j = 1, 2, 3 \), form a green \(K_4 - x \). On the other hand, if there is no green \(P_3 \) on the \(u_i \), then there are at most two green lines \(u_i u_j \). But every red graph with 5 points and 8 lines must contain a red \(K_4 - x \), completing the proof.

5. Conclusions. The small generalized diagonal Ramsey numbers just established are summarized in the following table:

<table>
<thead>
<tr>
<th>(F)</th>
<th>(K_2)</th>
<th>(P_3)</th>
<th>(K_3)</th>
<th>(2K_2)</th>
<th>(P_4)</th>
<th>(K_{1,3})</th>
<th>(C_4)</th>
<th>(K_{1,3} + x)</th>
<th>(K_4 - x)</th>
<th>(K_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(F))</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>
The next paper [2] in this series derives exact values of the small generalized off-diagonal Ramsey numbers for the above graphs F. These are defined on pairs of graphs F_1, F_2 as the smallest p such that any 2-coloring of K_p contains either a green F_1 or a red F_2. In another sequel [6], all the explicit 2-colorings of K_6 with the minimum number (two) of monochromatic triangles are displayed.

REFERENCES

5. F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969. MR 41 #1566.