SETS OF MULTIPLICITY AND DIFFERENTIABLE FUNCTIONS

R. KAUFMAN

Abstract. The paper contains two theorems relating the fine structure of differentiable functions, in one or more dimensions, to the behavior of Fourier-Stieltjes transforms on sets that are small in various ways.

In this paper we prove two theorems on the transformation of certain sets, defined as follows. A set \(F \) in a metric space is an \(L \)-set if there are sequences \(e_k \to 0 \) and \(\delta_k \to 0 \), and for each \(k \) a decomposition \(E = \bigcup_i E_i \), wherein \(\text{diam}(E_i) \leq e_k \delta_k \), while \(d(E_i, E_j) \geq \delta_k \) for \(i \neq j \). For each compact \(L \)-set \(E \) of real numbers there is a function \(h \) of class \(C^1(\mathbb{R}, \mathbb{R}) \) with \(h'>0 \), so that \(h(E) \) is a Kronecker set ([2], [3]). The first theorem is a complement to this.

Theorem I. Let \(\omega \) be a monotone, positive function on \((0, \infty)\), and \(\omega(0+) = 0 \); let \(C^1_\omega \) be the set of functions \(\varphi \) in \(C^1 \) with \(\varphi' > 0 \), \(|\varphi'(a) - \varphi'(b)| \leq \omega(|a-b|) \) for all real \(a \) and \(b \). Then there is a compact \(L \)-set \(E \) so that \(\varphi(E) \) is an \(M_\omega \)-set for each \(\varphi \) in \(C^1_\omega \).

To prove the theorem we choose a sequence of positive numbers \((c_n)\) so that \(c_0 = 1 \), \(\omega(c_n) < n^{-2} \), and \(c_{n+1} < n^{-3}c_n \). We now construct finite sets \(F_n \) and \(E_n \); the peculiar construction of \(F_n \) is the main point in the argument. \(F_n \) is a sequence of \(n^2 \) elements

\[
x(m) = x(0) + m_2 c_n n^{-5/2}, \quad 1 \leq m \leq n^2.
\]

Here \(x(0) = -c_n - c_{n} n^{-5/2} \) so that \(x(1) = 0 \). \(E_n \) is then a union of translates of \(F_n \), say \(\bigcup_i (E_n + a_i) \). Then \(a_0 = 0 \), while \(a_{j+1} - a_j = n^2 c_n + n^{-1/2}c_n \). In different terms, the final term in each translate becomes \(x(0) \) in its successor to the right. The number of translates is to be \([c_{n-1} c_n n^{-15/8}]\) for \(n \geq 1 \).

(a) In \(F_n \) we have the inequalities

\[
c_n \leq x(m+1) - x(m) \leq (n^2 + n^{3/2})c_n < 2n^3 c_n.
\]

Thus \(E_n \) has diameter \(2n^{-1/6}c_{n-1} \). The vector sum \(E = \sum_{n=1}^\infty E_n \) is then an \(L \)-set. (It is somewhat easier to verify that, for large enough \(r \), the subset...
$E = \sum_{n=1}^{\infty} E_n$ is an L-set; this would serve just as well.) In each E_n we construct the uniform probability distribution μ_n and then the convolution product $\prod_1^n \mu_n$, a probability in E. To prove the theorem, we demonstrate in fact that

$$\lim_{u \to +\infty} \int \exp(iu\varphi(t))\mu(dt) = 0 \quad \text{for each } \varphi \text{ in } C^1_\alpha.$$

To each large u we choose an n and observe

$$\left| \int \exp(iu\varphi(t))\mu(dt) \right| \leq \sup_{s \in E_n} \left| \int \exp iu\varphi(t + s)\mu_n(dt) \right|.$$

Certain exponents u are handled without using the special properties of φ; the remaining exponents require more careful estimation. (In our second theorem we exploit this idea by making all exponents of the first sort.)

(b) $n^{1/5}c_n^{-1} \leq u \leq n^{-1/5}c_n^{-1}$. We must estimate the sums $\sum_{E_n} \exp(iu\varphi(x+s))$, $s \in E_n$, uniformly. Now for successive elements z_i and z_{i+1} of E_n we have

$$|z_{i+1} - z_i - c_n| \leq 3n^{-3/2}c_n = o(c_n),$$

$$|u\varphi(z_{i+1} + s) - u\varphi(z_i + s) - u\varphi'(s)c_n| = o(uc_n).$$

The last relation requires only that φ' be bounded and uniformly continuous on an interval about E. Now $uc_n \leq n^{-1/5}$, and the linear length of the sequence $\{u\varphi(x+s), x \in E\}$ is asymptotically $u\varphi'(s)c_n^{-1}n^{-1/6} \geq \varphi'(s)n^{1/30} \to +\infty$. Thus this part of the argument can be concluded by geometrical reasoning concerning uniform distribution modulo 2π.

(c) For the remaining exponents we define n by the inequality $n^{-1/5}c_n^{-1} < u < (n+1)^{1/5}c_n^{-1}$. Again we have recourse to uniform distribution, but first we split E_n into its constituents $a_i + F_n$, and then split F_n into residue classes modulo n. Thus we are attempting to estimate the distribution of sequences

$$u\varphi(s + x(m)), \quad 1 \leq m \leq n, m \equiv r \mod n.$$

Writing $y(p) = x(r + np), 0 \leq p < n, 1 \leq r \leq n$, we have sequences $u\varphi(y(p)+s)$, $0 \leq p < n$. To these sequences we apply an inequality of van der Corput [1, pp. 71–73] and conclude that it will be sufficient to obtain the uniform distribution of the difference sequences

$$u\varphi(y(p + h) + s) - u\varphi(y(p) + s), \quad 0 \leq p < n - h,$$

for $h = 1, 2, 3, \ldots$. (This need not be uniform with respect to h.) Now F_n has diameter $<4n^2c_n$ so

$$\varphi(y(p + h)) - \varphi(y(p) + s) = [y(p + h) - y(p)]\varphi'(y(0) + s)$$

$$+ 0(y(p + h) - y(p))\omega(n^2c_n), \quad |\theta| \leq 4.$$
The error term can be majorized by

$$4 \cdot 4nhc_n \cdot o(c_{n-1}) = O(n^{-1}h c_n) = o(u^{-1}).$$

Therefore the error term can be neglected, as can the factor $\varphi'(y(0)+)$ in the remaining argument. Then

$$y(p + h) - y(p) = hnc_n + [h^2n^2 + 2hn(r + pn)]n^{-5/2}c_n$$

$$= A(h, n, r) + 2hn^{-1/2}c_n p.$$

Here $A(h, n, r)$ depends only on the variables indicated. Thus

$$uy(p + h) - uy(p) = A' + 2uhn^{-1/2}c_n p,$$

with

$$un^{-1/2}c_n < (n + 1)^{1/5}n^{-1/2} \to 0,$$

$$un^{-1/2}c_n \cdot n > n^{1/2}n^{-1/5} \to +\infty,$$

and $h \geq 1$.

The last two relations suffice for our purpose, since p assumes the values in $[0, n - 1]$. Thus the exceptional exponents u are disposed of, and the proof is complete.

In our second theorem we consider all C^1 maps from a rectangle in R^k to a Euclidean space $R^m (m \geq 1)$. All maps except a set of the first category transform a certain set of uniqueness onto a M_0-set.

The theorem does not require Baire’s theorem to demonstrate the existence of the C^1 map, since maps with polynomial coefficients can be written explicitly.

Let S_1 and S_2 be sets of positive integers, each containing segments of unbounded length, and highly disjoint in the following sense: to each K the inequality $|s_1 - s_2| < K (s_i \in S_i)$ has only a finite number of solutions s_1, s_2. Then E_i is the set of sums $\sum_{n \neq s_i} e_n 2^{-n}$ ($e_n = 0, 1$), and so E_i is an L-set. In E_i we place the canonical product measure and on $E = E_1 \times E_2$ the measure $\mu = \mu_1 \times \mu_2$.

Definition. A measurable function h on $E_1 \times E_2$ to R^m is called projectively diffuse provided $\mu \{z : h(z) \in V\} = 0$ for every vector subspace $V \neq R^m$. Equivalently, h is projectively diffuse provided

$$\lim_{\varepsilon \to 0} \mu \{z : |(h(z), u)| < \varepsilon \|u\|\}$$

uniformly for all u in R^m.

Theorem II. (i) Let $F(x, y)$ be a C^1 map of R^2 into R^m such that $\partial F / \partial x$ and $\partial F / \partial y$ are projectively diffuse. Then $F(E)$ is an M_0-set in R^m,

$$\lim \int \exp i(u, F) \, d\mu = 0 \quad \text{as} \quad \|u\| \to \infty \text{ in } R^m.$$
Moreover, these mappings form a set of second category in the B-space $C^1(I; \mathbb{R}^m)$, where I is a closed rectangle containing E, and μ is an arbitrary diffuse measure on E.

It is easy to write down functions F, relative to measures $\mu = \mu_1 \times \mu_2$, provided only that each factor is a diffuse measure. Let e_1, \ldots, e_m be a basis for \mathbb{R}^m and let $F(x, y) = \sum e_i (x+y)^i$. Then for any linear form $f \neq 0$, $l(\partial F/\partial x) = l(\partial F/\partial y)$ has only a finite number of zeroes on any line, so its zero-set is $\mu_1 \times \mu_2$-null.

Proof of Theorem II (i). Let E_n denote any of the subsets of E determined by a choice of the first n coordinates in the factors E_1 and E_2, and let Q_n denote the closed convex hull of E_n. Then to each $\delta > 0$ there is an $\epsilon > 0$ and integer N with this property: for every element u of norm 1 in \mathbb{R}^m, the squares Q_N meeting the set $\{ |(\partial_x F, u)| < \epsilon \}$ have total μ-measure at most δ. We call the remaining rectangles Q_N admissible for u; they are disjoint except for a set of μ-measure 0. Now let $u = \|u\| \eta_0$; to prove Theorem II (i) it suffices to prove that

$$\lim_{Q_N} \exp i(\eta_0, F) d\mu = 0, \quad Q_N \text{ admissible for } \eta_0.$$

Indeed, for each η_0 the admissible rectangles form a disjoint family of total measure $> 1 - \delta$. The restriction of μ to Q_N is easily described; let μ_1^N and μ_2^N be the product measures on $\{ x \in \mathbb{R}^2 : n \in S_i, n > N \}$ and $\lambda^N = \mu_1^N \times \mu_2^N$. Then the restriction is obtained from λ^N by a translation and a scalar multiplication. Therefore our problem is reduced to estimating integrals

$$\int \exp i \|u\| (\eta_0, F(z + z^*)) \lambda^N(dz), \quad z^* \in Q_N.$$

Suppose for definiteness that $\log \|u\| / \log 2$ is further from S_1 than from S_2. The integral is reduced to an iterated integral

$$\iint \exp i \|u\| G(x, y) \mu_1^N(dx) \mu_2^N(dy),$$

where $|\partial_x G| > \epsilon$ on a rectangle containing the support of the measure, and the metric properties of $\partial_x G$ are no worse than those of $\partial_x F$. Now μ_1^N contains as a factor the uniform distribution on a set $\{ \sum e_n 2^{-n} : r \leq n \leq p \}$, namely an arithmetic progression of difference 2^{-r}, and 2^{p-r+1} terms. We can attain $\log \|u\| / \log 2 \to +\infty$, $p - \log \|u\| / \log 2 \to +\infty$, that is $2^{-r} \|u\| \to 0$, $2^{-r} \|u\| \to 0$. Since the progression has length on (the real line) 2^{-r+1}, the proof can now be completed as in Theorem I.

Proof of Theorem II (ii). For any diffuse measure μ, let N_μ be the set of F in $C^1(I; \mathbb{R}^m)$ for which there is a linear form $l \neq 0$ so that
\[\mu(z : \partial F(z) = 0) > 0; \] thus \(N_\mu \) is an \(F_\sigma \) in \(C^1 \). Further, if \(\mu = \sum_{j=1}^\infty \lambda_j \) is expressed as a sum of positive measures, then \(N_\mu = \bigcup_j N_{\lambda_j} \). Polynomials \(P(x, y) \) are dense in \(C^1 \) and by the device used after the statement of the theorem, we see that the set \(\{ p : \partial_x p \neq 0 \text{ for all forms } \neq 0 \} \) is dense in \(C^1 \).

Then \(N_\mu \) has void interior in \(C^1 \) unless \(\mu(Z) > 0 \), \(Z \) being the zero-set of some polynomial \(p \neq 0 \). Writing \(\mu(X) = \mu(X \cap Z) + \mu(X \setminus Z) = \lambda(X) + \lambda_\sigma(X) \), we can iterate this for the measure \(\lambda_2, \ldots \). Thus \(\mu = \lambda + \sum_{j=1}^\infty \lambda_j \), where \(N_\lambda \) has void interior and \(\lambda_j \) is concentrated on a zero-set \(Z_j \).

Next we observe that by the implicit function theorem each \(Z_j \) is a finite or countable union of analytic images of \((0, 1)\); we can therefore conclude that a polynomial having an uncountable number of zeroes on \(Z_\lambda \) vanishes identically on each connected component of \(Z_j \). To any \(m \) distinct points on an infinite component, \(Z_k \), there is a dense set of polynomials \(p \) so that \(\{ \partial_x p(Z_k) \}_1^m \) has rank \(m \) and hence for any \(l \neq 0 \), \(l(\partial_x p) \) has only isolated zeroes on the component. Because \(Z_j \) is a countable union of its components, \(\lambda_j \) is a sum of measures for which the exceptional sets are non-dense, and the theorem is proved.

REFERENCES

Department of Mathematics, University of Illinois, Urbana, Illinois 61801