UNITARY GROUPS AND COMMUTATORS

ROBERT M. KAUFFMAN

Abstract. If \(H \) is a possibly unbounded selfadjoint operator and \(A \) is a closed operator in a Hilbert space, the relation
\[
(U_t^{-1}AU_t)f = iU_t^{-1}(AH-HA)U_t f
\]
can be shown to hold under relatively reasonable hypotheses on \(A \) and \(f \), where \(U_t = e^{iHt} \). This relation can then be used to relate properties of the commutator \(AH-HA \) to properties of \(A \) and \(H \).

In quantum mechanics, a state \(f \) at time \(t=0 \) evolves at time \(t_0 \) into the state \(U_{t_0}f \), where \(U_t = e^{iHt} \) and \(H \) is the quantum mechanical Hamiltonian operator for the system. This means that for the observable \(A \), the expectation of \(A \) in the state \(U_{t_0}f \) is given by \(\langle AU_{t_0}f, U_{t_0}f \rangle \). Equivalently, we may regard the state as fixed and the observable \(A \) as evolving with time. Thus at time \(t \) the new observable \(A_t \) is \(U_t^{-1}AU_t \). To analyze this evolution further, an obvious step is to differentiate with respect to \(t \), which yields the formal relation
\[
A_t' = iU_t^{-1}(AH-HA)U_t.
\]
If \(i(AH-HA) \) is positive definite, for example, this means that expectations are increasing.

Thus one is naturally led to study the commutator \(AH-HA \). We shall use the group \(U_t \) as an essential tool in our study, and the hypotheses of our theorems will explicitly involve \(U_t \). This seems justified physically, since \(U_t \) has direct physical significance.

A quite different method of relating \(A, H \) and \(AH-HA \) is given in the interesting book by Putnam [3].

In what follows, we let \(U_t = e^{iHt} \), and \(H \) be a selfadjoint operator in a Hilbert space \(h \). \(A \) will be a closed operator in \(h \). Take domain \(H^n \) to mean the intersection of the domains of all \(H^n \), where \(n \) ranges over the positive integers. Take \(H^0 \) to be the identity operator.

We first state and prove conditions under which the relationship
\[
(U_t^{-1}AU_t) = iU_t^{-1}(AH-HA)U_t
\]
holds.

Theorem 1. Let \(n \) be a nonnegative integer, and let \(m > n \) be a positive integer or \(\infty \). Suppose that domain \(A \) contains domain \(H^n \), and that \(A \) takes
domain H^m into domain H. Then, for any f in domain H^m, $(U_t^{-1}A U_t f)'$ exists in the strong sense and is equal to $i[U_t^{-1}(AH-HA)U_t]f$.

Remark. If AH and HA were both defined on domain H^i, for some nonnegative integer i, the hypotheses of Theorem 1 would hold, taking $n=i$, and $m=i+1$.

Proof. We prove the theorem by taking difference quotients, after first observing that U_t takes domain H^i onto itself, for any i which is either a nonnegative integer or ∞.

Now
\[U_{t+\Delta t}^{-1}A U_{t+\Delta t} f - U_t^{-1}A U_t f = U_t^{-1}[U_{\Delta t}^{-1}A U_{\Delta t} - A]U_t f. \]
Calling $U_t f = g$, we note that g is in domain H^m. But
\[(1/\Delta t)[U_{\Delta t}^{-1}A U_{\Delta t} - A]g = (1/\Delta t)(U_{-\Delta t} - I)Ag + (U_{-\Delta t}A(U_{\Delta t} - I)g)(1/\Delta t). \]
As Δt approaches zero, the first term goes to $-iHAg$, since Ag is in domain H by hypothesis. The second term is a little harder to analyze.

First, we note that A defines a closed, and therefore continuous linear transformation of B into h, where B is the Banach space created by giving domain H^m the graph norm associated with H^m.

However $(U_{\Delta t} - I)g/\Delta t$ approaches iHg in B as Δt approaches zero, since g is in domain H^{n+1}. Thus $A(U_{\Delta t} - I)g/\Delta t$ converges to $iAHg$ in h.

But, finally, from strong continuity of U_t and the fact that $\|U_t\| = 1$ for all t, it follows that $U_{-\Delta t}A(U_{\Delta t} - I)(g/\Delta t)$ approaches $iAHg$ as Δt approaches zero.

Collecting what we have proved, we see that $(1/\Delta t)[U_{-\Delta t}^{-1}A U_{-\Delta t} - A]g$ approaches $i(AH-HA)g$ as Δt approaches zero. From continuity of U_t it follows that $(1/\Delta t)U_{-\Delta t}(U_{-\Delta t}^{-1}A U_{-\Delta t} - A)U_t f$ approaches $i(U_{-\Delta t}(AH-HA)U_t f$ in h as Δt approaches zero. This completes the proof of Theorem 1.

Corollary 1. Under the hypotheses of Theorem 1, it cannot happen that $(i(AH-HA)U_t f, U_t f) > C \|U_t f\|^2$ for any $C > 0$, and neither can it happen that $(i(AH-HA)U_t f, U_t f) < -C \|U_t f\|^2$ for all t in any infinite interval.

Proof. By the closed graph theorem, and the fact that in the graph norm generated by H on domain H, the norm of $U_t f$ is the same as that of f, it follows that $\|AU_t f\|$ remains bounded. Therefore so does $(AU_t f, U_t f)$. By Theorem 1, the proof is completed.

Definition. An operator A is said to be local with respect to $U_t f$ if $U_t f$ is contained in domain A for all t, and $AU_t f$ approaches zero as t approaches $\pm \infty$.
It might at first appear that it is hard to show that an operator A is local with respect to $U_t f$. This is not the case, however, for many types of self-adjoint operators H which are important in applications. A few remarks on this problem seem in order.

First, if H is a self-adjoint operator in \mathcal{H}, and f is an element of \mathcal{H}, then recall that f is said to be absolutely continuous with respect to H if the real valued measure $m_f(S)=\|P(S)f\|^2$ is absolutely continuous with respect to Lebesgue measure on R. Here S is any borel set in R, and $P(S)$ is the projection associated with S by the spectral measure associated with H. The set of all such f forms a reducing subspace of H, and the restriction of H to this subspace forms a self-adjoint operator H_a. U_t takes this subspace into itself. If $H_a=H$, H is said to be absolutely continuous.

Now, if f is absolutely continuous with respect to H, H is a self-adjoint ordinary differential operator and $h=L^2(R)$, it follows by an argument in Lax and Phillips [2, p. 147], that $\|C_\Delta U_t f\|$ approaches 0 as t approaches $\pm\infty$, where C_Δ is the characteristic function of any compact interval Δ. Here H must be assumed to have order one or greater. Thus if A is a bounded operator, and A is the limit in operator norm of a sequence of operators A_n defined by $A_n f=AC_{\Delta_n} f$ for a sequence of compact intervals Δ_n, it follows that A is local with respect to $U_t f$, provided $U_t=e^{iH_t}$, H is a self-adjoint ordinary differential operator, and f is absolutely continuous with respect to H. An example of such an A is multiplication by a C_0 function.

It may be shown (see Kato [1]) that many ordinary differential operators have nontrivial absolutely continuous parts, and that therefore such vectors f may be found. Further, similar considerations can be made to apply to the case where A is an ordinary differential operator with C_0 coefficients, provided H is a self-adjoint ordinary differential operator in $L^2(R)$ with bounded coefficients and nontrivial absolutely continuous part and A is of order less than or equal to that of H.

Another way of showing locality, which also applies to differential operators is contained in the following theorem.

Theorem 2. Let H be absolutely continuous. Let A be H-compact. Then A is local with respect to $U_t f$ for all f in domain H.

Remark. Recall that A is said to be H-compact if domain A contains domain H, and A is a compact operator from domain H into h, where domain H is equipped with the graph norm from H.

Proof. Since H is absolutely continuous, then by the Riemann-Lebesgue lemma $(U_t f, g)$, which equals $(\int_{-\infty}^{\infty} e^{it\Delta} dP f, g)$, approaches 0 when t approaches $\pm\infty$ for all f and g in h. Now suppose A is not local.
with respect to some \(f \) in domain \(H \). Then there is a sequence \(t_n \) approaching, say, \(+\infty \) such that \(\|AU_{t_n}f\| > C \) for some \(C > 0 \). Since \(A \) is \(H \)-compact, it follows that, for some subsequence \(t_{n(i)} \), \(AU_{t_{n(i)}}f \) approaches \(g \), with \(\|g\| \geq C \).

Let \(U_{t_n}f = f_i \). Let \(\|Af_i\| \leq M \). Select \(g_1 \) in domain \(A^* \) such that \(\|g_1 - g\| \leq C^2/2M \). Then \(\|(Af_i, g_1) - (Af_i, g)\| \leq M \|g_1 - g\| \leq C^2/2 \). Therefore, when \(j \) is large enough, \(\|(f_j, A^*g_1)\| \geq C^2/4 \). Therefore \(|(f_j, A^*g_1)| \geq C^2/4 \), which contradicts the fact \(f_j \) converges weakly to 0. This completes the proof.

We now use the hypothesis of locality with respect to \(U_t f \).

Theorem 3. Suppose that \(AH^2, HAH \) and \(H^2A \) are all defined on domain \(H^{n-1} \) for some positive integer \(n \geq 3 \). Suppose \(A \) is local with respect to \(U_t f \), where \(f \) is in domain \(H^n \), and suppose there is a dense subspace \(S \) of \(H \) on which \(A^*H^2 \), \(HA^*H \) and \(H^2A^* \) are defined. Then \(AH - HA \) is local with respect to \(U_t f \).

Remark. If \(A \) is symmetric, the last hypothesis is obviously redundant. Also if \(A \) and \(H \) are ordinary differential operators, \(C^0 \) will usually be such a subspace \(S \).

Proof. \(\left(U_t^{-1}AU_tf\right)^* = U_t^{-1}(AH^2 - 2HAH + H^2A)U_t f \) as may be seen using Theorem 1. It is of course necessary to show that the operator \(AH - HA \), when restricted to domain \(H^{n-1} \), has a closed extension. However, an operator has a closed extension if and only if its adjoint is densely defined, so our last hypothesis takes care of this possibility.

Now if \(T \) is the operator \(AH^2 - 2HAH + H^2A \), restricted to domain \(H^n \), then \(T \) has a closed extension. Therefore, giving domain \(H^n \) the graph norm from \(H^n \), and letting \(\tilde{T} \) denote the operator induced by \(T \) from this Banach space into \(H \), we see that \(\tilde{T} \) is continuous by the closed graph theorem.

But since \(H^nU_t f = U_t H^n f \), it follows that all \(U_t f \) have the same norm as \(f \) in the graph norm on domain \(H^n \). Therefore the set of all \(U_t f \) is a bounded set in the Banach space domain \(H^n \), so that the set of \(TU_t f \) is a bounded set in \(h \). Therefore the set of all \((U_t^{-1}AU_t f)^* \) is a bounded set in \(h \), as \(t \) ranges over the whole real line.

Let \(f'_t \) be \(U_t^{-1}AU_t f \). We need to show that \(f'_t \) approaches zero in norm, as \(t \) approaches \(\pm \infty \), in order to prove the theorem. Let \(g(t) = (f'_t, f_t) \). Then \(g'(t) = (f'_t, f'_t) + (f_t, f'_t) \). Also, \(g''(t) = (f''_t, f'_t) + 2(f'_t, f''_t) \). Since \(f''_t \) is bounded, and \(f_t \) goes to zero as \(t \) approaches \(\pm \infty \), it follows that \((f''_t, f_t) \) also approaches zero.

To show that \((f'_t, f'_t) \) approaches 0, we first observe that

\[
 f'_t = iU_t^{-1}(AH - HA)U_t f,
\]
which, once again, by the closed graph theorem, remains bounded as t approaches $\pm \infty$. Thus (f'_n, f'_n), which equals $(f'_n, f'_n) + (f'_n, f'_n)$, is a bounded real valued function of t. If there were a sequence t_n approaching, say, $+\infty$ such that $(f'_n, f'_n) > \varepsilon$, then there would have to be a δ such that (f'_n, f'_n) remained $\geq \varepsilon/2$ on $[t_n - \delta, t_n + \delta]$ for all n, by the mean value theorem. Thus there would be an N such that g'' would be greater than $\varepsilon/4$ on the interval $[t_n - \delta, t_n + \delta]$ for all $n \geq N$. However, since f'_n approaches zero and f'_n remains bounded as t approaches infinity, it is clear that $g'(t)$ must approach 0. This contradicts the fact we just discovered about g''. The theorem is proved.

Corollary 2. Under the hypotheses of Theorem 3, it cannot happen that $AH - HA$ has a bounded inverse when restricted to the linear span of the U_tf.

Corollary 3. Let f be as in Theorem 3, and suppose f is perpendicular to the eigenvectors of H. Let T be the operator formed by restricting $AH - HA$ to the linear span of the U_tf and T_1 be the closure of the graph of T in the product space $h \times h$. Then T_1 cannot be a linear operator with closed range and finite dimensional null space.

Proof. There is a sequence t_n approaching infinity such that $U_t f$ approaches 0 weakly in h. (See Lax and Phillips [2, p. 145].) But $(AH - HA)U_t f$ approaches zero by Theorem 3.

Let S be the closed linear span of the U_tf. If T_1 is a closed operator defined on a dense subspace of S, and K is its null space, and T_1 has closed range, then by dividing out K and using the closed graph theorem we see that the distance from $U_t f$ to K approaches zero. From this fact, and the fact that K is finite dimensional, it follows that a subsequence of $U_t f$ converges to a point g of K, with $\|g\| = \|f\|$. This contradicts the weak convergence of $U_t f$ to zero.

Corollary 4. Let H be absolutely continuous, and A be H-compact and symmetric. Further, suppose that for some positive integer n, AH^2, HAH and H^2A are defined on domain H^n. Then the restriction of $AH - HA$ to domain H^n can have no extension to a closed operator in h with closed range and finite dimensional null space.

Proof. Combine Theorem 2 and Corollary 3.

References

DEPARTMENT OF MATHEMATICS, WESTERN WASHINGTON STATE COLLEGE, BELLINGHAM, WASHINGTON 98225