Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Unitary groups and commutators


Author: Robert M. Kauffman
Journal: Proc. Amer. Math. Soc. 33 (1972), 95-100
MSC: Primary 47.40
DOI: https://doi.org/10.1090/S0002-9939-1972-0290167-3
MathSciNet review: 0290167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If H is a possibly unbounded selfadjoint operator and A is a closed operator in a Hilbert space, the relation $ (U_t^{ - 1}A{U_t}f)' = iU_t^{ - 1}(AH - HA){U_t}f$ can be shown to hold under relatively reasonable hypotheses on A and f, where $ {U_t} = {e^{iHt}}$. This relation can then be used to relate properties of the commutator $ AH - HA$ to properties of A and H.


References [Enhancements On Off] (What's this?)

  • [1] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • [2] Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
  • [3] C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47.40

Retrieve articles in all journals with MSC: 47.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0290167-3
Keywords: Unitary group, commutator, positive definite, closed range, finite dimensional null space
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society