Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embedding partially ordered spaces in topological semilattices


Author: Lloyd D. Tucker
Journal: Proc. Amer. Math. Soc. 33 (1972), 203-206
MSC: Primary 06A10; Secondary 06A20
DOI: https://doi.org/10.1090/S0002-9939-1972-0292724-7
MathSciNet review: 0292724
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A partial order $ \Gamma $ on a compact space S is called continuous if $ \Gamma $ is a closed subset of $ S \times S$. In this paper, we define and study an embedding $ \Phi $ of the arbitrary compact continuously partially ordered space $ (S,\Gamma )$ into a corresponding compact topological semilattice $ {S_\Gamma }$. We show that the structure of $ {S_\Gamma }$ entirely determines the structure of $ (S,\Gamma )$. We prove that the inverse images under $ \Phi $ of components in $ {S_\Gamma }$ are the order components of $ (S,\Gamma )$, where elements a and b of S are defined to be in the same order component of $ (S,\Gamma )$ if there exists no continuous monotonic map $ f:(S,\Gamma ) \to \{ 0,1\} $ which separates a and b. Finally, we show that $ {S_\Gamma }$ is connected if and only if $ (S,\Gamma )$ has only one order component.


References [Enhancements On Off] (What's this?)

  • [1] E. A. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 13, 54. MR 0042109 (13:54f)
  • [2] L. Nachbin, Sur les espaces topologiques ordonnés, C. R. Acad. Sci. Paris 226 (1948), 381-382; English transl. in Topology and order, Van Nostrand Math. Studies, Van Nostrand, Princeton, N.J., 1965. MR 9, 367; MR 36 #2125. MR 0023516 (9:367b)
  • [3] Lloyd D. Tucker, Generalized components and continuous orders (to appear).
  • [4] L. E. Ward, Jr., Concerning Koch's theorem on the existence of arcs, Pacific J. Math. 15 (1965), 347-355. MR 31 #6206. MR 0181981 (31:6206)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A10, 06A20

Retrieve articles in all journals with MSC: 06A10, 06A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0292724-7
Keywords: Continuous orders, embedding, topological semilattice, order component, order connected
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society