Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Perturbations of dissipative operators with relative bound one

Author: Paul R. Chernoff
Journal: Proc. Amer. Math. Soc. 33 (1972), 72-74
MSC: Primary 47D05; Secondary 47B44
MathSciNet review: 0296745
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be the generator of a $ ({C_0})$ contraction semigroup on a Banach space. Let B be a dissipative operator with densely defined adjoint. Assume that the inequality $ \left\Vert {Bx} \right\Vert \leqq \left\Vert {Ax} \right\Vert + b\left\Vert x \right\Vert$ holds on the domain of A. Then the closure of $ A + B$ generates a $ ({C_0})$ contraction semigroup.

References [Enhancements On Off] (What's this?)

  • [1] K. Gustafson, A perturbation lemma, Bull. Amer. Math. Soc. 72 (1966), 334-338. MR 32 #4555. MR 0187101 (32:4555)
  • [2] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [3] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. MR 24 #A2248. MR 0132403 (24:A2248)
  • [4] R. Wüst, Generalisations of Rellich's theorem on perturbation of (essentially) self-adjoint operators, Math. Z. 119 (1971), 276-280. MR 0282247 (43:7959)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 47B44

Retrieve articles in all journals with MSC: 47D05, 47B44

Additional Information

Keywords: Relatively bounded perturbations, dissipative operators, contraction semigroups
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society