Weak disjointness of transformation groups

Author:
Reuven Peleg

Journal:
Proc. Amer. Math. Soc. **33** (1972), 165-170

MSC:
Primary 54H15

DOI:
https://doi.org/10.1090/S0002-9939-1972-0298642-2

MathSciNet review:
0298642

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two transformation groups (t.g.) are called weakly disjoint if their product is ergodic. We characterize this relation for a certain class of t.g. and then prove that for (*X*, *T*) and (*Y*, *T*) in a certain family of t.g. (*X*, *T*) and (*Y*, *T*) are disjoint iff they have no nontrivial common factor. Finally, we generalize some disjointness relations of [**2**] and [**4**].

**[1]**H. Furstenberg,*The structure of distal flows*, Amer. J. Math.**85**(1963), 477-515. MR**28**#602. MR**0157368 (28:602)****[2]**-,*Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory**1**(1967), 1-49. MR**35**#4369. MR**0213508 (35:4369)****[3]**H. B. Keynes and J. B. Robertson,*Eigenvalue theorems in topological transformation groups*, Trans. Amer. Math. Soc.**139**(1969), 359-369. MR**38**#6029. MR**0237748 (38:6029)****[4]**H. B. Keynes,*The structure of weakly mixing transformation groups*(preprint).**[5]**R. Ellis,*Lectures on topological dynamics*, Benjamin, New York, 1969. MR**0267561 (42:2463)****[6]**R. Ellis and H. Keynes,*A Characterization of the equicontinuous structure relation*(preprint). MR**0282357 (43:8069)****[7]**L. Shapiro,*Distal and proximal extensions of minimal flows*, Math. Systems Theory**5**(1971), 76-88. MR**0301722 (46:877)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H15

Retrieve articles in all journals with MSC: 54H15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1972-0298642-2

Keywords:
Transformation groups,
disjointness,
eigenvalues

Article copyright:
© Copyright 1972
American Mathematical Society