Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On polynomials which commute with a given polynomial

Author: William M. Boyce
Journal: Proc. Amer. Math. Soc. 33 (1972), 229-234
MSC: Primary 12D99
MathSciNet review: 0291138
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By extending a theorem of Jacobsthal, the following result is obtained: if g is a nonlinear polynomial, there is an integer $ J(g) \geqq 1$ such that for each $ m > 0$ there are either $ J(g)$ or zero distinct polynomials of degree m which commute with g. A formula is given for computing $ J(g)$ from the coefficients of g.

References [Enhancements On Off] (What's this?)

  • [1] E. A. Bertram, Polynomials which commute with a Tchebycheff polynomial, Amer. Math. Monthly 68 (1971), 650-653. MR 0288104 (44:5302)
  • [2] H. D. Block and H. P. Thielman, Commutative polynomials, Quart. J. Math. Oxford Ser. (2) 2 (1951), 241-243. MR 13, 552. MR 0045250 (13:552f)
  • [3] E. J. Jacobsthal, Über vertauschbare Polynome, Math. Z. 63 (1955), 243-276. MR 17, 574. MR 0074373 (17:574a)
  • [4] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448. MR 1501252
  • [5] H. T. Engstrom, Polynomial substitutions, Amer. J. Math. 63 (1941), 249-255. MR 0003599 (2:242f)
  • [6] Howard Levi, Composite polynomials with coefficients in an arbitrary field of characteristic zero, Amer. J. Math. 64 (1942), 389-400. MR 0006162 (3:264e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12D99

Retrieve articles in all journals with MSC: 12D99

Additional Information

Keywords: Commuting functions, commuting polynomials, common fixed point, Tchebycheff polynomials, functional composition
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society