Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Finite group schemes over fields

Authors: Raymond T. Hoobler and Andy R. Magid
Journal: Proc. Amer. Math. Soc. 33 (1972), 310-312
MSC: Primary 18H10
MathSciNet review: 0291254
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A short proof that commutative group schemes over a field form an abelian category is given.

References [Enhancements On Off] (What's this?)

  • [1] P. Freyd, Abelian categories. An introduction to the theory of functors, Harper's Series in Modern Math., Harper and Row, New York, 1964. MR 29 #3517. MR 0166240 (29:3517)
  • [2] P. Gabriel, Construction de préschémas quotient, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64), fasc. 2a, exposé 5, Inst. Hautes Études Sci., Paris, 1965. MR 41 #1749. MR 0257095 (41:1749)
  • [3] F. Oort and J. R. Strooker, The category of finite bialgebras over a field, Nederl. Akad. Wetensch. Proc. Ser. A 70=Indag. Math. 29 (1967), 163-169. MR 35 #1599. MR 0210713 (35:1599)
  • [4] M. E. Sweedler, Hopf algebras, Math. Lecture Note Series, Benjamin, New York, 1969. MR 40 #5705. MR 0252485 (40:5705)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18H10

Retrieve articles in all journals with MSC: 18H10

Additional Information

Keywords: Group scheme, abelian category, duality
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society