Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Normally closed saturated formations


Author: Mark P. Hale
Journal: Proc. Amer. Math. Soc. 33 (1972), 337-342
MSC: Primary 20D99
DOI: https://doi.org/10.1090/S0002-9939-1972-0291271-6
MathSciNet review: 0291271
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Theorems of Gaschütz and Baer concerning the Frattini subgroup, the hypercenter, and nilpotent and supersolvable subgroups are extended to normally closed saturated formations.


References [Enhancements On Off] (What's this?)

  • [1] R. Baer, Supersoluble immersion, Canad. J. Math. 11 (1959), 353-369. MR 29 #4187. MR 0105445 (21:4187)
  • [2] R. W. Carter and T. O. Hawkes, The $ \mathfrak{F}$-normalizers of a finite soluble group, J. Algebra 5 (1967), 175-202. MR 34 #5914. MR 0206089 (34:5914)
  • [3] B. Fischer, Classes of conjugate subgroups in finite solvable groups, Yale University, New Haven, Conn., 1966.
  • [4] W. Gaschütz, Über die $ \Phi $-Untergruppe endlicher Gruppen, Math. Z. 58 (1953), 160-170. MR 15, 285. MR 0057873 (15:285c)
  • [5] -, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z. 80 (1962/63), 300-305. MR 31 #3505. MR 0179257 (31:3505)
  • [6] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 #229. MR 0231903 (38:229)
  • [7] P. Hall, System normalizers of a solvable group, Proc. London Math. Soc. (2) 43 (1937), 507-528.
  • [8] B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302. MR 0224703 (37:302)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D99

Retrieve articles in all journals with MSC: 20D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0291271-6
Keywords: Saturated formation, Frattini subgroup, hypercenter, immersion
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society