Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the coefficients of starlike functions


Author: Finbarr Holland
Journal: Proc. Amer. Math. Soc. 33 (1972), 463-470
MSC: Primary 30A34
DOI: https://doi.org/10.1090/S0002-9939-1972-0291438-7
MathSciNet review: 0291438
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every probability measure $ \mu $ on the circle group generates a function f that is starlike univalent on the open unit disc $ \Delta $. In this note the relationship between $ ({c_n})$, the Fourier-Stieltjes coefficients of $ \mu $, and $ ({a_n})$, the Taylor coefficients of f, is examined. A number of theroems are presented which indicate (possibly in the presence of fairly mild restrictions) that the sequences $ ({c_n})$ and $ (n{a_n})$ behave similarly. For example, it is shown that if $ f(\Delta )$ is finite, then $ ({c_n})$ converges to zero if, and only if, $ (n{a_n})$ converges to zero, thereby completing a result of Pommerenke.


References [Enhancements On Off] (What's this?)

  • [1] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216. MR 21 #5737. MR 0107009 (21:5737)
  • [2] J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233. MR 22 #1682. MR 0110814 (22:1682)
  • [3] W. Hayman, Multivalent functions, Cambridge Tracts in Math. and Math. Phys., no. 48, Cambridge Univ. Press, Cambridge, 1958. MR 21 #7302. MR 0108586 (21:7302)
  • [4] F. Holland and D. K. Thomas, The area theorem for starlike functions, J. London Math. Soc. (2) 1 (1969), 127-134. MR 39 #7080. MR 0245774 (39:7080)
  • [5] Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209-224. MR 25 #1279. MR 0137830 (25:1279)
  • [6] -, Über einige Klassen meromorpher schlichter Funktionen, Math. Z. 78 (1962), 263-284. MR 28 #1285. MR 0158058 (28:1285)
  • [7] -, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235. MR 27 #280. MR 0150279 (27:280)
  • [8] A. Zygmund, Trigonometrical series. Vol. 2, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0076084 (17:844d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A34

Retrieve articles in all journals with MSC: 30A34


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0291438-7
Keywords: Starlike function, univalent function, domain of finite area, probability measure, Banach space, closed linear span
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society