Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some Wallman compactifications determined by retracts


Author: H. L. Bentley
Journal: Proc. Amer. Math. Soc. 33 (1972), 587-593
MSC: Primary 54D35; Secondary 54C15
DOI: https://doi.org/10.1090/S0002-9939-1972-0293588-8
MathSciNet review: 0293588
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let Y be a Hausdorff compactification of a locally compact space X and let $ K = Y - X$ be the remainder. Suppose that K is a regular Wallman space (i.e. K has a base for closed sets which is a ring and which consists of sets each of which is the closure of its interior) and suppose that K is a neighborhood retract of Y. Under these assumptions, it is proved below that Y is a Wallman compactification of X.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Alo and H. L. Shapiro, A note on compactifications and semi-normal spaces, J. Austral. Math. Soc. 8 (1968), 102-108. MR 37 #3527. MR 0227943 (37:3527)
  • [2] H. L. Bentley, Some Wallman compactifications of locally compact spaces, Fund. Math. (to appear). MR 0305349 (46:4479)
  • [3] E. S. Berney, On Wallman compactifications, Notices Amer. Math. Soc. 17 (1970), 215. Abstract #672-464.
  • [4] C. M. Biles, Wallman-type compactifications (unpublished notes).
  • [5] K. Borsuk, Theory of retracts, Monografie Mat., Tom 44, PWN, Warsaw, 1967. MR 35 #7306. MR 0216473 (35:7306)
  • [6] O. Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964), 602-607. MR 29 #4028. MR 0166755 (29:4028)
  • [7] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857. MR 0125557 (23:A2857)
  • [8] J. Rogers, On compactifications with continua as remainders (to appear). MR 0283763 (44:993)
  • [9] A. K. Steiner and E. F. Steiner, Compactifications as closures of graphs, Fund. Math. 63 (1968), 221-223. MR 38 #6546. MR 0238270 (38:6546)
  • [10] -, Products of compact metric spaces are regular Wallman, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 428-430. MR 40 #867. MR 0247603 (40:867)
  • [11] -, Wallman and Z-compactifications, Duke Math. J. 35 (1968), 269-275. MR 37 #3526. MR 0227942 (37:3526)
  • [12] E. F. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1967/68), 295-304. MR 36 #5899. MR 0222849 (36:5899)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D35, 54C15

Retrieve articles in all journals with MSC: 54D35, 54C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0293588-8
Keywords: Wallman compactification, normal base, locally compact space, retract
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society