Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on rigid substructures


Author: R. J. Parikh
Journal: Proc. Amer. Math. Soc. 33 (1972), 520-522
MSC: Primary 02H99
DOI: https://doi.org/10.1090/S0002-9939-1972-0294112-6
MathSciNet review: 0294112
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a theory with a recursive set of axioms may have (nontrivial) rigid substructures and yet fail to have $ \Sigma _1^1$, or $ \Pi _1^1$ rigid substructures.


References [Enhancements On Off] (What's this?)

  • [1] G. Kreisel, Model-theoretic invariants: Applications to recursive and hyperarithmetic operations, Theory of Models (Proc. 1963 Internat. Sympos, Berkeley), North-Holland, Amsterdam, 1965, pp. 190-205, especially p. 193. MR 33 #7257. MR 0199107 (33:7257)
  • [2] H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967. MR 37 #61. MR 0224462 (37:61)
  • [3] F. Ville, Complexité des structures rigidement contenues dans une théorie du premier ordre, C. R. Acad. Sci. Paris Sér. A 272 (1971), 561-563. MR 0284323 (44:1552)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02H99

Retrieve articles in all journals with MSC: 02H99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0294112-6
Keywords: Rigid substructures, recursive theory
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society