HEREDITARY RADICALS IN JORDAN RINGS

ROBERT LEWAND

Abstract. The object of this paper is to examine some radical properties of quadratic Jordan algebras and to show that under certain conditions, $R(\mathfrak{B}) = \mathfrak{B} \cap R(\mathfrak{J})$ where \mathfrak{B} is an ideal of a quadratic Jordan algebra \mathfrak{J}, $R(\mathfrak{B})$ is the radical of \mathfrak{B}, and $R(\mathfrak{J})$ is the radical of \mathfrak{J}.

1. Preliminaries. We adopt the notation and terminology of an earlier paper [2] concerning quadratic Jordan algebras (defined by the quadratic operators U_x) as opposed to linear Jordan algebras (defined by the linear operators L_x). Thus we have a product U_{xy} linear in y and quadratic in x satisfying the following axioms as well as their linearizations:

(UQJ I) $U_1 = I$ (1 the unit);
(UQJ II) $U_{U(x,y)} = U_x U_y U_{xy}$;
(UQJ III) $U_x V_{y,z} = V_{y,z} U_x (V_{y,z} = (xyz) = U_x y)$.

Throughout this paper \mathfrak{J} will denote a quadratic Jordan algebra over an arbitrary ring of scalars Φ.

Define a property R of a class of rings (e.g. associative rings or Jordan rings) to be a radical property if it satisfies the following three conditions [1]:

(a) Every homomorphic image of an R ring is again an R ring.
(b) Every ring \mathfrak{J} contains an R ideal $R(\mathfrak{J})$ which contains every other R ideal of \mathfrak{J}. The maximal R ideal $R(\mathfrak{J})$ is called the R radical of \mathfrak{J}.
(c) For \mathfrak{B} an ideal of \mathfrak{J}, if \mathfrak{B} and $\mathfrak{J} \mathfrak{B}$ are R rings, then so is \mathfrak{J}.

An immediate consequence of this definition is $R(\mathfrak{B}/R(\mathfrak{B})) = 0$. If $R(\mathfrak{B}) = 0$, \mathfrak{B} is said to be R semisimple.

Many well-known radical properties, but not all, satisfy a further condition:

(d) Every ideal of an R ring is again an R ring (i.e. property R is inherited by ideals of an R ring).

If a radical property satisfies condition (d) that property is called hereditary.

Received by the editors August 2, 1971.
AMS 1969 subject classifications. Primary 1740.
Key words and phrases. Quadratic Jordan algebra, radical property.

1 The results of this paper are included in the author's doctoral dissertation written at the University of Virginia.
In this paper we shall consider all radical properties R of \(\mathcal{J} \) such that if \(\mathcal{J} \) contains no R ideals then \(\mathcal{J} \) contains no absolute zero divisors (where \(z \in \mathcal{J} \) is an absolute zero divisor if \(U_z = 0 \)). Henceforth such radical properties will be called radical properties of type A.

Two of the more prominent radical properties are quasi-invertibility and nil: An element \(z \) belonging to a Jordan algebra \(\mathcal{J} \) is quasi-invertible (q.i.) with quasi-inverse \(w \in \mathcal{J} \) if \(1 - z \) is invertible with inverse \(1 - w \) in \(\Phi 1 \otimes \mathcal{J} \). A subset is called quasi-invertible if all of its elements are quasi-invertible in \(\mathcal{J} \). The maximal quasi-invertible ideal of an algebra is usually called the Jacobson radical and plays an important role in the structure theory. If we define an element \(z \in \mathcal{J} \) to be nilpotent if \(z^n = 0 \) for some \(n \) (here powers of an element are defined recursively by \(z^0 = 1, z^1 = z, z^{n+2} = U_z z^n \)), then a nil ideal is one all of whose elements are nilpotent. There is a unique maximal nil ideal containing all other nil ideals and this is called the nil radical. In [3] McCrimmon shows that nil and quasi-invertibility are radical properties of type A.

A lesser known radical property is that of antiprime: An algebra \(\mathcal{J} \) is strongly semiprime if it contains no absolute zero divisors. An algebra \(\mathcal{J} \) is an antiprime algebra (henceforth called a P-algebra) if no nonzero homomorphic image of \(\mathcal{J} \) is strongly semiprime (i.e. every homomorphic image of \(\mathcal{J} \) contains an absolute zero divisor).

Proposition. \(P \) is a radical property.

Proof.
(a) Every homomorphic image \(\rho(\mathcal{J}) \) of a P-algebra \(\mathcal{J} \) is again a P-algebra for if not, then for some homomorphism \(\delta \), \(\delta(\rho(\mathcal{J})) = \rho(\delta(\mathcal{J})) \) is strongly semiprime and nonzero.

(b) For \(\mathcal{J} \) an ideal of \(\mathcal{J} \) and for \(\mathcal{J} \) and \(\mathcal{J}/\mathcal{J} \) P-algebra, \(\mathcal{J} \) is also a P-algebra for if not, then some nonzero homomorphic image \(\mathcal{J}/\mathcal{J} (R \subset \mathcal{J}) \) is strongly semiprime.

Case 1. If \(\mathcal{J} = \mathcal{J} \), then \(\mathcal{J}/\mathcal{J} \) is a strongly semiprime nonzero homomorphic image (projection) of \(\mathcal{J}/\mathcal{J} \) which is assumed to be a P-algebra, a contradiction.

Case 2. If \(\mathcal{J} \subset \mathcal{J} \), \(\mathcal{J}/(\mathcal{J} \cap \mathcal{J}) \) is a nonzero homomorphic image of the P-algebra \(\mathcal{B} \). So there is an element \(x \in \mathcal{B} \), \(x \notin \mathcal{J} \), such that \(U_x \mathcal{B} \subset \mathcal{J} \). If \(U_x \mathcal{J} \subset \mathcal{J} \), then \(x (\notin \mathcal{J}) \) is a nonzero absolute zero divisor in \(\mathcal{J}/\mathcal{J} \) which is assumed to be strongly semiprime: contradiction. If \(U_x \mathcal{J} \notin \mathcal{J} \), examine \(U_{U_x(1)} \mathcal{J} \) (where \(U_{U_x(1)} \notin \mathcal{J} \)). \(U_{U_x(1)} \mathcal{J} = U_x U_x \mathcal{J} \subset U_x \mathcal{J} \subset \mathcal{J} \). So \(U_x j \) is a nonzero absolute zero divisor of \(\mathcal{J}/\mathcal{J} \), a contradiction. Hence \(\mathcal{J} \) must be a P-algebra.

(c) Every P-algebra \(\mathcal{J} \) contains a P-ideal \(\mathcal{R} \) which contains every other P-ideal of \(\mathcal{J} \). Let \(\mathcal{R} = \sum \mathcal{B} \) be the sum of all the P-ideals of \(\mathcal{J} \). We claim
\(R \) is a \(P \)-ideal, for take any nonzero homomorphic image \(\rho(R) \) of \(R \):
\(\rho(R) = \sum \rho(B_i) \). We must find an absolute zero divisor in \(\rho(R) \). Since \(\rho(R) \neq 0 \), \(\rho(B_i) \neq 0 \) for some \(i \); and since \(B_i \) is a \(P \)-ideal, there exists a nonzero element \(z \in \rho(B_i) \) such that \(U_z \rho(B_i) = 0 \). If \(U_z \rho(R) = 0 \), \(z \) is an absolute zero divisor in \(\rho(R) \). So assume \(U_z \rho(R) \neq 0 \) and examine \(U_z \rho(R) \) for some \(i \). \(U_z \rho(R) = U_z U_i \rho(R) \neq 0 \). Hence \(z \) is an absolute zero divisor of \(\rho(R) \). \(R \) is therefore a \(P \)-algebra.

It is easy to see that \(P \) is a radical property of type A because the ideal spanned by all absolute zero divisors is clearly a \(P \)-ideal.

In the case of associative algebras one has the following theorem: For \(R \) an ideal of an associative algebra \(A \), \(R(A) = R(R(A)) \) where \(R \) is the Jacobson radical. In [4] McCrimmon proves this theorem for quadratic Jordan algebras. We now prove this theorem for all hereditary radical properties of type A.

2. The proof.

Lemma. For \(B \) an ideal of a quadratic Jordan algebra \(A \), for any radical property \(R \) of type A, and for \(x \in B \), \(U_x B \subseteq R(B) \Rightarrow x \in R(B) \).

Proof. \(U_x B \subseteq R(B) \) implies \(U_x B / R(B) = 0 \), i.e., \(x \) is an absolute zero divisor of \(B = B / R(B) \). But since \(R \) is a radical property of type A, \(R(B)R(B) = 0 \) implies \(B / R(B) \) contains no nonzero absolute zero divisors. Hence \(x = 0 \) or \(x \in R(B) \).

Theorem 1. For \(B \) an ideal of a quadratic Jordan algebra \(A \), and for \(R \) any radical property of type A, \(R(B) = B \cap R(A) \).

Proof. Since \(R(B) \subseteq B \), it is sufficient to show that \(R(B) \) is an \(R \) ideal of \(A \) and therefore \(R(B) \subseteq R(A) \). That is, we must show

1. \(U_{R(B)} A \subseteq R(B) \),
2. \(U_{R(B)} B \subseteq R(B) \).

Note. We may as well assume that \(A \) is unital since any quadratic Jordan algebra \(A \) can be imbedded in a unital quadratic Jordan algebra \(A' = A \oplus A \), and any ideal in \(A \) will be an ideal in \(A' \). To prove (1), let \(z \in U_{R(B)} A \), i.e., let \(z \) be a finite linear combination of elements of the form \(U_{x_i} y_i \) where \(x_i \in R(B) \) and \(y_i \in A \). In view of our lemma, since \(z \in B \) it is sufficient to prove \(U_{x_i} B \subseteq R(B) \). Also since \(U_{x_i} B = \sum U_{x_i} y_i \), it is now clear that we will be done if \(U_{x_i} y_i \subseteq R(B) \) for \(x_i \in R(B) \) and \(y_i \in A \); for then \(U_{x_i} B \subseteq R(B) \) implies \(U_{x_i} y_i \subseteq R(B) \) which in turn implies \(U_{x_i} B = U_{x_i} B \subseteq R(B) \) (since \(R(B) \) is an ideal of \(B \) \(\subseteq U_{x_i} B \subseteq R(B) \).

To prove (2) we now let \(z \in U R(B) \), i.e., let \(z \) be a finite linear combination of elements of the form \(U_{x_i} y_i \) where \(x_i \in A \) and \(y_i \in R(B) \). Again
we are done if \(U_x \mathfrak{B} \subseteq R(\mathfrak{B}) \) for \(x \in \mathfrak{J} \) and \(y \in R(\mathfrak{B}) \). By repeated application of the lemma it is sufficient to show \(U_p \mathfrak{B} \subseteq R(\mathfrak{B}) \) for \(p = U_r b', \ q = U_r b, \ r = U_r y \) where now \(x \in \mathfrak{J}, y \in R(\mathfrak{B}), b \) and \(b' \) are arbitrary elements of \(\mathfrak{B} \). But

\[
U_x \mathfrak{B} = U_{U(y)} \mathfrak{B} = U_x U_y U_x \mathfrak{B} = U_{U(x)} U_y U_{U(y)} \mathfrak{B} = (U_x U_y U_x)(U_x U_y U_x)(U_x U_y U_x) (U_x U_y U_x) \mathfrak{B} \quad \text{(by UQJ III)}.
\]

So

\[
U_x \mathfrak{B} \subseteq (U_{U(x)})(U_x U_y)(U_{U(y)}) U_y \mathfrak{B} \quad \text{(since \(\mathfrak{B} \) is an ideal of \(\mathfrak{J} \))} \]
\[
\subseteq (U_{U(x)})(U_x U_y)(U_{U(y)}) R(\mathfrak{B}) \quad \text{(since \(y \in R(\mathfrak{B}) \), an ideal of \(\mathfrak{B} \))} \]
\[
\subseteq (U_{U(x)})(U_x U_y) R(\mathfrak{B}) \]
\[
\subseteq U_{U(y)} U_x U_y - U_{U(x)} U_x U_y R(\mathfrak{B}) \quad \text{(by a linearization of UQJ III)} \]
\[
\subseteq U_{U(y)} U_x U_y - U_{U(\mathfrak{B})} U_x U_y \quad \text{(by \(\mathfrak{B} \) an ideal of \(\mathfrak{J} \))} \]
\[
\subseteq U_{U(y)} U_x U_y \quad \text{R(\(\mathfrak{B}) \subseteq R(\mathfrak{B}).} \]

Theorem 2. If \(R \) is any hereditary radical property of type A in a quadratic Jordan algebra \(\mathfrak{J} \) and if \(\mathfrak{B} \) is an ideal of \(\mathfrak{J} \), then \(R(\mathfrak{B}) = \mathfrak{B} \cap R(\mathfrak{J}). \)

Proof. By Theorem 1 it is sufficient to show \(R(\mathfrak{B}) \supseteq \mathfrak{B} \cap R(\mathfrak{J}) \). But since \(R \) is a hereditary radical property, any ideal of an \(R \) ring is again an \(R \) ring. In particular, \(\mathfrak{B} \cap R(\mathfrak{J}) \) is an ideal of \(R(\mathfrak{J}) \) and is therefore an \(R \) ring and an ideal in \(\mathfrak{B} \). Therefore \(\mathfrak{B} \cap R(\mathfrak{J}) \subseteq R(\mathfrak{B}). \)

Corollary. For \(R \) nil or quasi-invertible, and for \(\mathfrak{B} \) an ideal of \(\mathfrak{J} \), \(R(\mathfrak{B}) = \mathfrak{B} \cap R(\mathfrak{J}). \) So, \(\mathfrak{J} \) R-semisimple \(\Rightarrow \mathfrak{B} \) R-semisimple.

Proof. It has been mentioned that nil and quasi-invertibility are radical properties of type A. It remains to show that they are hereditary radical properties. But it is clear that every ideal of a nil ring is again nil. Furthermore, the explicit expression for the quasi-inverse of an element \(z \) is

\[
w = U_{U(z)}(z^2 - z) \]

Since

\[
(1 - z)^{-1} = U_{U(z)}(1 - z) = U_{U(z)}(1 - z) - U_{U(z)}(z^2 - z) = 1 - w.
\]

If \(\mathfrak{B} \) is any ideal then the quasi-inverse of any quasi-invertible element of \(\mathfrak{B} \) also belongs to \(\mathfrak{B} \). Quasi-invertibility, therefore, is a hereditary radical property.
REFERENCES

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22901