ON THE RADICAL OF THE GROUP ALGEBRA OF A p-GROUP OVER A MODULAR FIELD

GAIL L. CARNS AND CHONG-YUN CHAO

Abstract. Let G be a finite p-group, K be the field of integers modulo p, KG be the group algebra of G over K and N be the radical of KG. By using the fact that the annihilator, $A(N)$, of N is one dimensional, we characterize the elements of $A(N^2)$. We also present relationships among the cardinality of $A(N^2)$, the number of maximal subgroups in G and the number of conjugate classes in G. Theorems concerning the Frattini subalgebra of N and the existence of an outer automorphism of N are also proved.

1. Introduction. Throughout this note, we let p be a prime, G be a finite p-group, K be the field of integers modulo p and KG be the group algebra of G over K. It is well known that KG is not semisimple; the fundamental ideal $N=\{\sum_{g \in G} a_g g \in KG; \sum_{g \in G} a_g = 0\}$ of KG is its radical ([3], [6]). Let e be the identity of G, then the elements $g-e$ for all $g \neq e$ in G constitute a basis for N. Hence, the dimension, $\dim N$, of N is equal to $|G|-1$ where $|G|$ is the order of G. Also, KG is the semidirect sum of the ideal N and the subalgebra $\langle e \rangle$. The nilpotent associative algebra N is said to be of exponent t if $N^t \neq 0$ and $N^{t+1} = 0$, i.e.,

$$N = N^1 \supset N^2 \supset \cdots \supset N^t \supset N^{t+1} = 0.$$

Recently, Hill in [2] showed that the annihilator (two sided) of N^t, $A(N^t)$, is N^{t+1-t}, $1 \leq t \leq t$. In this note we shall present some properties of N by centering around the fact that $A(N)$ is isomorphic to K, i.e., the dimension of $A(N)$ is one. In §2, we present a characterization of elements in $A(N^2)$ and relationships among the cardinality, $|A(N^2)|$, of $A(N^2)$, the number of maximal subgroups of G and the number of conjugate classes in G. In particular, $\dim A(N^2)$ is equal to the least number of generators of G plus one. In §3, we show that the Frattini subalgebra of any associative nilpotent algebra U over a field is U^2. We also use Stitzinger's results in [7]...
to state the nonimbedding properties of N. In §4, analogous to Gaschütz’
result in [1] on the existence of an outer p-automorphism of a finite
nonabelian p-group, we show that N has an automorphism of order p
which is not inner if $|G|>2$.

2. A characterization of elements in $A(N^2)$. For each element
$\alpha=\sum_{g \in G} \alpha_g \in KG$, we may associate a map α from G to K defined by
$\alpha(g)=\alpha_g$. Clearly, this correspondence between α and α is one-to-one.
Also, the addition of two such maps is defined as pointwise, i.e.,
$(\alpha+\beta)(g)=\alpha(g)+\beta(g)$. Let N be the fundamental ideal of exponent t in
KG. Then, by Hill’s result in [2], we know $A(N)=N^t$. Also, one can easily
verify that $k \in A(N)=N^t$ if and only if k is a constant map, i.e., $k(g)=k$
for every $g \in G$ and $N^t=\langle \sum_{g \in G} g \rangle$.

Theorem 1. Let N be the fundamental ideal of exponent $t>1$ in KG
and $\text{Hom}(G, K^+)$ be the set of group homomorphisms of G into the additive
group K^+ of the integers modulo p. Then $\alpha \in A(N^2)$ if and only if $\alpha=\alpha^*+k$
for some $\alpha^* \in \text{Hom}(G, K^+)$ and some constant map k. Further, α^*
and k are unique for α.

Proof. If $\alpha=\alpha^*+k$ for some $\alpha^* \in \text{Hom}(G, K^+)$ and some constant
map k, then for every $g \in G$, we have

$$\alpha^*(g) = \alpha(g) - k(g) = \alpha_g - k.$$

Also, by using (1) and $\alpha^*(gh)=\alpha^*(g)+\alpha^*(h)$, we have

$$\alpha_{gh} = \alpha_g + \alpha_h - k$$

for all $g, h \in G$. Now by using (2), for all $h, u \in G$, we have

$$(h^{-1}-e)(u^{-1}-e)\alpha = (hu - h - u + e)\left(\sum_{g \in G} \alpha_g g\right)$$

$$= \sum_{g \in G} (\alpha_{hug} - \alpha_{hg} - \alpha_{ug} + \alpha_g g)$$

$$= \sum_{g \in G} (\alpha_{u^{-1}h} - \alpha_{u^{-1}} - \alpha_{u^{-1}g} + \alpha_g)g$$

$$= \sum_{g \in G} [(\alpha_{u^{-1}} + \alpha_{h^{-1}g} - k) - \alpha_{h^{-1}g} - (\alpha_{u^{-1}} + \alpha_g - k) + \alpha_g]g$$

$$= 0$$

Similarly, $\alpha(h^{-1})(u^{-1}-e)=0$. It follows that $\alpha \in A(N^2)$.

Conversely, if $\alpha \in A(N^2)$, then for all $h, u \in G$,

$$0 = (h^{-1}-e)(u^{-1}-e)\left(\sum_{g \in G} \alpha_g g\right) = \sum_{g \in G} (\alpha_{uh} - \alpha_{h} - \alpha_{ug} + \alpha_g)g.$$
In particular, the coefficient of e is zero, i.e.,

$$\alpha_u = \alpha_u + \alpha_h - \alpha_e,$$

or

$$\alpha(uh) = \alpha(u) + \alpha(h) - \alpha_e. \tag{3}$$

Let $k = \alpha_e$ and $\alpha^* = \alpha - k$, then (3) can be written as

$$\alpha^*(uh) = \alpha^*(u) + \alpha^*(h),$$

i.e., $\alpha^* \in \text{Hom}(G, K^*)$.

The uniqueness follows from the fact that $\alpha^*(e) = 0$ yields $\alpha(e) = k(e)$.

Remark. By Hill's result in [2], in Theorem 2, $A(N^2)$ can be replaced by N^{t-1}.

Corollary 1.1. Let $r = \dim A(N^2) = \dim N^{t-1}$, $m =$ the number of maximal subgroups of G, $d =$ the least number of elements which generate G, $c =$ the number of conjugate classes in G and $\phi(G) =$ the Frattini subgroup of G. Then,

(i) $|A(N^2)| = p \cdot |\text{Hom}(G, K^*)|.$

(ii) $m = \sum_{i=0}^{r-2} p^i.$

(iii) $r = d + 1.$

(iv) G is cyclic if and only if $r = 2$.

(v) G is elementary abelian if and only if $r = n + 1$ where $|G| = p^n$.

(vi) $m = \sum_{i=0}^{r-1} p^i.$

(vii) $A(N^2) = N^{t-1} \leq Z(N)$ where $Z(N)$ is the center of N.

(viii) $m \leq \sum_{i=0}^{r-1} p^i$ if $|G| > 4$.

Proof. (i) By Theorem 1, $|A(N^2)| = p \cdot |\text{Hom}(G, K^*)|$. Since K^* is a simple group, the kernel of any nonzero map η in $\text{Hom}(G, K^*)$ is a maximal subgroup in G. Since the kernel of η contains the kernel of the natural map from G onto $G/\phi(G)$, any homomorphism of G into K^* can be factored through $G/\phi(G)$. Thus, $|\text{Hom}(G, K^*)| = |\text{Hom}(G/\phi(G), K^*)|$. Also, $G/\phi(G)$ is elementary abelian and every finite abelian group is isomorphic to its dual group [5, p. 50], therefore we have

$$|\text{Hom}(G/\phi(G), K^*)| = |G/\phi(G)|.$$

Consequently,

$$|A(N^2)| = p \cdot |\text{Hom}(G, K^*)| = p \cdot |G/\phi(G)|.$$

(ii) Let σ be a nonzero homomorphism of G onto K^*. Then the kernel of σ is a maximal subgroup of G. Two nonzero homomorphisms in $\text{Hom}(G, K^*)$ have the same kernel if and only if they differ by an automorphism of K^*. Thus, $|\text{Hom}(G, K^*)| = 1 + (p - 1)m$ and $p^* = |A(N^2)| = p \text{ Hom } |G, K^*| = p(1 + (p - 1)m)$, i.e., $m = \sum_{i=0}^{r-2} p^i.$
(iii) By (i), \(r = \dim(A(N^2)) = \dim_K(G/\phi(G)) + 1 \) and, by the Burnside basis theorem, \(\dim_K(G/\phi(G)) = d \).

(iv), (v) and (vi) follow from (i), (ii) and (iii).

Remark. By using Corollary 14 in [2] we can state: If \(r = 2 \), \(KG \) has exactly one ideal of each dimension.

(vii) It is well known that the conjugate sums \(C_1 = e, C_2, \ldots, C_c \) constitute a basis for the center, \(Z(KG) \), of \(KG \) where each \(C_i \) is the sum of elements in a conjugate class in \(G \). Let \(\alpha = \sum_{g \in G} x_g g \) be an arbitrary element in \(A(N^2) \). If \(u \) and \(h \) are conjugates in \(G \), i.e., \(h = u^g, v \) for some \(v \in G \), then, by using Theorem 1, we have

\[
\alpha_h = \alpha^*(h) + k = \alpha^*(uv^{-1}) + k = \alpha^*(u) + k = \alpha_u.
\]

Hence, \(\alpha \) is a linear combination of conjugate sums, i.e., \(\alpha \in Z(KG) \).

Since \(Z(N) = Z(KG) \cap N, A(N^2) \subseteq Z(N) \).

(viii) Since \(Z(N) = Z(KG) \cap N \) and \(e \in Z(KG) \) and \(e \notin N \), \(\dim Z(N) \leq \dim Z(KG) = c \). Let \(a_i, 2 \leq i \leq c \), be the cardinality of the conjugate class from which the sum \(c_i \) is taken. We note that since \(G \) is a \(p \)-group, \(a_i \) is equal to a power of \(p \) greater than one if the conjugate class consists of more than one element. Since \(C^1, C^2, \ldots, C^c \) constitute a basis for \(KG \), \(C^2 - a_2 e, C^3 - a_3 e, \ldots, C^c - a_{c-1} e \) are in \(Z(N) \) and are linearly independent. Hence, \(\dim Z(N) = c - 1 \).

Since \(G \) is a \(p \)-group, there is a nonidentity \(h \) in \(Z(G) \) such that \(h \neq e \neq N^{-1} \). The reason is that if \(h - e \) belonged to \(N^{-1} \), then \((u - e)(h - e) = \sum_{g \in G} g \) for some \(u \in G \). This is impossible since \(|G| > 4 \). Consequently, \(A(N^2) \neq Z(N) \) and \(p(1 + (p - 1)m) = |A(N^2)| < p^{c-1} \), i.e., \(p(1 + m(p - 1)) \leq p^{c-2} \), and \(m \leq (p^{-3} - 1)/(p - 1) = \sum_{i=0}^{p-4} p^i \).

Remark. If \(G \) is the dihedral group of order 8 and if \(K \) is the field of integers modulo 2, then \(m = 3, c = 5 \) and the equality in (viii) holds.

3. **Nonimbedding.** Let \(S \) be an associative algebra (not necessarily finite dimensional) over a field. The Frattini subalgebra, \(\phi(S) \), of \(S \) is defined as the intersection of all maximal subalgebras of \(S \) if maximal subalgebras of \(S \) exist and as \(S \) otherwise. Stitzinger showed in [7, p. 531] that if \(B \) is a nontrivial finite dimensional nilpotent associative algebra over a field such that the right annihilator of \(B \) is one dimensional, then \(B \) cannot be imbedded as an ideal in any associative algebra \(S \) contained in \(\phi(S) \).

Theorem 2. Let \(U \) be a nilpotent associative algebra over a field \(F \). Then \(\phi(U) = U^2 \).

In order to prove Theorem 2, we need the following: We define the normalizer, \(n_f(W) \), of a subalgebra \(W \) in an associative algebra \(V \) over a field \(F \) to be \(\{v \in V : vW \subseteq W \text{ and } Wv \subseteq W \} \). We say that a subalgebra \(W \) is self-normalizing if \(n_f(W) = W \).
Lemma 1. Let V be a nilpotent associative algebra of exponent $t > 1$ over a field F. If W is a proper subalgebra of V then W is not self-normalizing.

Proof. W contains $V^{t+1} = 0$. Assume that W contains V^t and does not contain V^{t-1}. Then $W + V^t \subseteq W$ and $W + V^{t-1} \not\subseteq W$. Also,

$$\langle W + V^t \rangle W \subseteq W + V^t \subseteq W \quad \text{and} \quad W(W + V^t) \subseteq W + V^t \subseteq W.$$

Hence, $\eta_p(W) \subseteq W$.

The proof of Theorem 2 goes as follows: We claim that $U^2 \cong \phi(U)$. Since U/U^2 has zero multiplication, every maximal subspace M of the vector space U/U^2 is a maximal subalgebra. Hence $M + U^2$ is a maximal subalgebra in U and $U^2 \cong \phi(U)$.

Now we show that $\phi(U) \supseteq U^2$. Let M be any maximal subalgebra of U. By Lemma 1, M is an ideal in U. Hence, $\bar{U} = U/M \neq \emptyset$. Since M is maximal and U is nilpotent, \bar{U} is a nilpotent algebra with no proper subalgebras. Since U^2 is a subalgebra of \bar{U} and \bar{U} is nilpotent, $\bar{U}^2 = \emptyset$, i.e., $U^2 \subseteq M$ for any arbitrary maximal subalgebra M of U. It follows that $U^2 \cong \phi(U)$.

Corollary 2.1. Let N be the fundamental ideal of KG where $|G| > 2$. Then N cannot be imbedded as an ideal in any finite nilpotent associative algebra B over K such that $B^2 \supseteq N$.

Proof. It follows from $\dim A(N) = 1$, Stitzinger’s result in [7] and our Theorem 2.

4. Outer automorphisms. Let R be a ring with an identity e, then, for a right quasi-regular element a in R, $\omega_a(x) = x + a'x + xa + a'xa = (e + a')x(e + a)$, where a' is a right quasi-inverse of a, is an automorphism of R called an inner automorphism of R. As indicated on p. 55 in [4], the algebra which has a basis $\{x, y, z\}$ over the field of integers modulo 2 with the multiplication defined by $xy = z$ and all other products being zero has no outer (noninner) automorphism. Since every nilpotent element is right quasi-regular and since N is a nilpotent ideal in KG, for each $q \in N$, $\omega_q(x) = (e + q')x(e + q)$ is an inner automorphism of N. In fact, each automorphism ω of G induces an automorphism ω on N defined linearly by $\omega(\sum_{g \in G} \alpha_g g) = \sum_{g \in G} \alpha_g (\hat{g} \otimes g)$. If $\hat{g}(h) = g^{-1}h$ is an inner automorphism of G, then one can easily verify that it induces an automorphism on N which is equal to the inner automorphism ω_{e-e} on N. Although Gaschütz showed in [1] that every nonabelian p-group G possesses a noninner automorphism whose order is a power of p, it is not known whether this outer automorphism of G induces an outer automorphism on N. However, by using $A(N) = \langle \sum_{q \in G} q \rangle$, we can prove the following

Theorem 3. Let N be the fundamental ideal of KG where $|G| > 2$. Then N has an automorphism of order p which is not inner.
PROOF. Let \(h \in G, (h-e) \in N \) and \((h-e) \notin N^2 \). Since \((h-e) \notin N^2 \), we may choose a complementary subspace \(M \) of \(\langle (h-e) \rangle \) in \(N \) such that \(M \supseteq N^2 \). Then \(N = M + \langle (h-e) \rangle \); where the sum is the direct sum of vector spaces. Since \(|G| > 2 \), \(z = \sum_{g \in G} g \in N^2 \subseteq M \) and \(M \neq 0 \). Since every element \(x \in N \) can be uniquely written as \(x = y + k(h-e) \) where \(y \in M \) and \(k \in K \), we can define a linear transformation \(T \) on \(N \) such that \(Ty = y \) and \(T(k(h-e)) = k(h-e) + kz \). We claim that \(T \) is an automorphism. By using \(z \in A(N) \) and \(M \) being an ideal in \(N \) (since \(M \supseteq N^2 \)), it follows that \(T \) is an endomorphism. Also, \(T(y + k(h-e) - kz) = y + k(h-e) \) indicates that \(T \) is surjective. Hence, \(T \) is an automorphism.

We claim that \(T \) is not inner. Suppose the contrary, i.e., there existed a \(q \in N \) such that \(T = \omega_q \), then, we would, in particular, have

\[
(4) \quad (h-e) + z = T(h-e) = \omega_q(h-e) = (e + q')(h-e)(e + q).
\]

Multiplying both sides of (4) by \((e+q) \), we obtain

\[
(h-e) + z + q(h-e) = (h-e) + (h-e)q,
\]

i.e., \(z =hq - qh \). Say \(q = \cdots + x_{k-1}h^{-1} + \cdots \), then \(z = (x_{k-1} - x_{k-1})e + \cdots \).

But \(z = \sum_{g \in G} g \). Hence, it is a contradiction, and \(T \) is not inner.

Since \(T^p(x) = T^p(y + k(h-e)) = y + k(h-e) + pkz = x \) for every \(x \in N \), \(T \) is of order \(p \).

References

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.