Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on polyhedral Banach spaces


Authors: Alan Gleit and Robert McGuigan
Journal: Proc. Amer. Math. Soc. 33 (1972), 398-404
MSC: Primary 46B05
DOI: https://doi.org/10.1090/S0002-9939-1972-0295055-4
MathSciNet review: 0295055
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a sufficient condition for an infinitedimensional Banach space X to be polyhedral. If $ {X^\ast}$ is an L-space this condition is also necessary.


References [Enhancements On Off] (What's this?)

  • [1] E. Effros, On a class of real Banach spaces, Israel J. Math. 9 (1971), 430-458. MR 0296658 (45:5717)
  • [2] V. Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79-107. MR 21 #4390. MR 0105651 (21:4390)
  • [3] -, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243-267. MR 25 #2512. MR 0139073 (25:2512)
  • [4] A. J. Lazar, Polyhedral Banach spaces and extensions of compact operators, Israel J. Math. 7 (1969), 357-364. MR 41 #796. MR 0256137 (41:796)
  • [5] A. Lazar and J. Lindenstrauss, Banach spaces whose duals are $ {L_1}$ spaces and their representing matrices, Acta Math. 126 (1971), 165-194. MR 0291771 (45:862)
  • [6] J. Lindenstrauss, Notes on Klee's paper ``Polyhedral sections of convex bodies,'' Israel J. Math. 4 (1966), 235-242. MR 35 #703. MR 0209807 (35:703)
  • [7] -, Extension of compact operators, Mem. Amer. Math. Soc. No. 48 (1964). MR 31 #3828. MR 0179580 (31:3828)
  • [8] S. Mazur, Über konvexe Mengen in linearen normierten Raumen, Studia Math. 4 (1933), 70-84.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B05

Retrieve articles in all journals with MSC: 46B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0295055-4
Keywords: Polyhedral Banach space, Lindenstrauss space, biface, L-space
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society