ANNIHILATOR IDEALS IN THE COHOMOLOGY OF BANACH ALGEBRAS

A. M. SINCLAIR

Abstract. If A is a C^*-algebra, if X is a Banach A-module, and if J is the annihilator of X in A, then the cohomology space $\mathcal{H}^n(A, X^*)$ is isomorphic to $\mathcal{H}^n(A/J, X^*)$ for each positive integer n.

B. E. Johnson [5, Proposition 1.8] has shown that if A is a Banach algebra with a bounded approximate identity and if X is a Banach A-module, then $X_x = \{axb : x \in X; a, b \in A\}$ is a closed neo-unital submodule of X and $\mathcal{H}^n(A, X^*)$ is isomorphic to $\mathcal{H}^n(A, X^*_x)$. In particular this result shows that in calculating cohomologies of dual Banach modules for C^*-algebras attention may be restricted to neo-unital modules. Since each closed (two-sided) ideal in a C^*-algebra has a bounded approximate identity [2, Propositions 1.8.2 and 1.7.2] our result shows that for C^*-algebras and dual Banach modules attention may be restricted to faithful modules. If A is a Banach algebra, if X is a Banach A-module, and if J is a closed ideal in A annihilating X, then there is a natural homomorphism Q, which is defined in Theorem 1, from $\mathcal{H}^n(A/J, X^*)$ into $\mathcal{H}^n(A, X^*)$. Under the additional assumption that J has a bounded approximate identity, this homomorphism Q is an isomorphism (Theorem 1). In Remark 4 we give an elementary example to show that an additional assumption on J is necessary if the conclusion of Theorem 1 is to hold.

I am grateful to B. E. Johnson for a preprint of [5], and I acknowledge a C.S.I.R. travel grant.

If A is a Banach algebra, if X is a Banach A-module, and if n is a positive integer, we let $\mathcal{L}^n(A, X^*)$ denote the Banach space of continuous n-linear mappings from A into X^*, the dual of X (our notation and definitions are from [5]). Recall that $\mathcal{L}^n(A, X^*)$ is the dual space of a Banach space $A \otimes A \otimes \cdots \otimes A \otimes X$ (see [5]). We also give X^* the dual A-module structure from the Banach A-module X by defining af and fa for a in A and f in X^* by

$$\langle af, x \rangle = \langle f, xa \rangle \quad \text{and} \quad \langle fa, x \rangle = \langle f, ax \rangle$$

Received by the editors August 9, 1971.

AMS 1970 subject classifications. Primary 46H25, 18H15.

Key words and phrases. Banach algebra, Banach module, cohomology, annihilator ideal, approximate identity, C^*-algebra.

© American Mathematical Society 1972

361
The mapping δ^n from $\mathcal{L}^{n-1}(A, X^*)$ to $\mathcal{L}^n(A, X^*)$ is defined by

$$
(\delta^n T)(a_1, \cdots, a_n) = a_1 T(a_2, \cdots, a_n) + \sum_{j=1}^{n-1} (-1)^j T(a_1, \cdots, a_j a_{j+1}, \cdots, a_n) + (-1)^n T(a_1, \cdots, a_{n-1}) a_n
$$

for T in $\mathcal{L}^{n-1}(A, X^*)$, which we take to be X^* when $n-1=0$, and for a_1, \cdots, a_n in A. Then $\delta^{n+1} \delta^n = 0$, and we let

$$
\mathcal{H}^n(A, X^*) = \text{Ker} \delta^{n+1} / \text{Im} \delta^n.
$$

We use the same δ^n for all algebras and modules. We say that an ideal J in a Banach algebra A annihilates a Banach A-module X if $ax = xa = 0$ for all a in J and x in X. If the closed ideal J annihilates X, we regard X as a Banach A/J-module by defining $(a+J)x = ax$ and $(a+J)x = xa$ for all a in A and x in X.

Theorem 1. Let A be a Banach algebra, let X be a Banach A-module, and let J be a closed ideal in A annihilating X. If J has a bounded approximate identity, then $\mathcal{H}^n(A, X^*)$ is isomorphic to $\mathcal{H}^n(A, X^*)$ under the mapping $Q: T + \text{Im} \delta^n \to \theta T + \text{Im} \delta^n$

where $(\theta T)(a_1, \cdots, a_n) = T(a_1 + J, \cdots, a_n + J)$ for T in $\mathcal{L}^n(A/J, X^*)$ and a_1, \cdots, a_n in A.

We require a lemma before proving Theorem 1. Under the hypotheses of Theorem 1 we shall regard $\mathcal{L}^1(A/J, X^*)$ as a Banach A-module by defining aT and Ta, for all a in A and T in $\mathcal{L}^1(A/J, X^*)$, by

$$
(aT)(b + J) = aT(b + J) \quad \text{and} \quad (Ta)(b + J) = T(ab + J) - T(a + J)b
$$

for all b in A. Compare the following lemma with [5, 1.a].

Lemma 2. Let A be a Banach algebra, let X be a Banach A-module, and let J be a closed ideal in A annihilating X. Let n be an integer greater than 1. If J has a bounded approximate identity, then $\mathcal{H}^{n-1}(A, \mathcal{L}^1(A/J, X^*))$ is isomorphic to $\mathcal{H}^n(A, X^*)$ under the mapping $\chi: T + \text{Im} \delta^{n-1} \to \psi_n T + \text{Im} \delta^n$

where

$$
(\psi_n T)(a_1, \cdots, a_n) = T(a_1, \cdots, a_{n-1})(a_n + J)
$$

for all T in $\mathcal{L}^{n-1}(A, \mathcal{L}^1(A/J, X^*))$ and all a_1, \cdots, a_n in A.
Proof. A routine calculation using equations (1), (2), and (3) shows that

\[\psi_{n+1}\delta^n = \delta^{n+1}\psi_n \]

for \(n \) a positive integer. Applying equation (4) with \(n \) replaced by \(n-1 \) we observe that the mapping \(\chi \) is well defined. Using (4) as it stands we observe that \(\chi \) maps \(\mathcal{A}^{n-1}(A, \mathcal{L}^2(A/J, X^*)) \) into \(\mathcal{A}^n(A, X^*) \). We now use the bounded approximate identity in \(J \) to show that \(\chi \) is an isomorphism.

We shall show that there is an \(R \) in \(\mathcal{L}^{n-1}(A, X^*) \) with

\[(T - \delta^nR)(a_1, \ldots, a_n) = 0 \]

if \(a_n \) is in \(J \). If we have found such an \(R \), then equation (5) implies that \(T - \delta^nR \) is in the image of \(\psi_n \), and so there is a \(P \) in \(\mathcal{L}^{n-1}(A, \mathcal{L}^2(A/J, X^*)) \) with \(\psi_nP = T - \delta^nR \). From equation (4) we obtain

\[\psi_{n+1}\delta^nP = \delta^{n+1}\psi_nP = \delta^{n+1}(T - \delta^nR) = 0, \]

and thus \(\delta^nP = 0 \) because \(\psi_{n+1} \) is a monomorphism. Therefore \(\chi \) is an epimorphism.

Let \(T \) be in \(\mathcal{L}^n(A, X^*) \) with \(\delta^{n+1}T = 0 \), and let \(\{e_a\} \) be a bounded approximate identity in \(J \). Now \(\mathcal{L}^n(A, X^*) \) may be regarded as the dual space of \(A \otimes \cdots \otimes A \otimes X \), where there are \(n \)-copies of \(A \), and under this identification the weak-* topology on \(\mathcal{L}^n(A, X^*) \) is generated by the seminorms \(S \rightarrow (S(a_1, \ldots, a_n), x) \) where \(\langle \cdot, \cdot \rangle \) denotes the pairing of \(X \) and \(X^* \), and \(a_1, \ldots, a_n \) are in \(A \) and \(x \) is in \(X \) (see [5, §1]). Now \(\{T(\cdot, \ldots, e_a)\} \) is a bounded net in \(\mathcal{L}^{n-1}(A, X^*) \) and hence has a subnet convergent in the weak-* topology of \(\mathcal{L}^{n-1}(A, X^*) \). For convenience, we take \(\{T(\cdot, \ldots, e_a)\} \) itself to be convergent in the weak-* topology to an element \((-1)^{n+1}R \) in \(\mathcal{L}^{n-1}(A, X^*) \). All limits in this proof are over the directed set corresponding to the net \(\{e_a\} \) and are in the weak-* topology in \(X^* \).

Using \(\delta^{n+1}T(a_1, \ldots, a_n, e_a) = 0 \), equation (1), and the definition of \(R \), we obtain

\[\delta^nR(a_1, \ldots, a_n) = (-1)^{n+1}\lim \left\{ a_1T(a_2, \ldots, a_n, e_a) + \sum_{j=1}^{n-1} (-1)^jT(a_1, \ldots, a_ja_{j+1}, \ldots, a_n, e_a) \right\} \]

\[+ (-1)^nT(a_3, \ldots, a_{n-1}, e_a)a_n \]

\[= (-1)^n \lim \{(-1)^nT(a_1, \ldots, a_{n-1}, e_a) + (-1)^{n+1}T(a_1, \ldots, a_n, e_a) \}
\]

\[+ (-1)^{n+1}T(a_1, \ldots, a_{n-1}, e_a)a_n \]

\[= T(a_1, \ldots, a_n) \]

provided \(a_n \) is in \(J \). This proves equation (5).
We shall now prove that \(\chi \) is one-to-one. We let \(T \) be in
\[
\mathcal{L}^{n-1}(A, \mathcal{L}^1(A/J, X^*))
\]
with \(\psi_n T = \delta^n S \) where \(S \) is some element of \(\mathcal{L}^{n-1}(A, X^*) \). We shall obtain an \(R \) in \(\mathcal{L}^{n-2}(A, X^*) \) such that
\[
(S - \delta^{n-1} R)(a_1, \ldots, a_{n-1}) = 0
\]
if \(a_{n-1} \) is in \(J \). Having found such an \(R \) there is a \(P \) in \(\mathcal{L}^{n-2}(A, \mathcal{L}^1(A/J, X^*)) \) such that \(\psi_{n-1} P = S - \delta^{n-1} R \). From this and equation (4) we obtain
\[
\psi_n T = \delta^n S = \delta^n \psi_{n-1} P + \delta^n \delta^{n-1} R = \psi_n \delta^{n-1} P.
\]
Because \(\psi_n \) is a monomorphism, \(T \) is equal to \(\delta^{n-1} P \).

We let \(T \) be in \(\mathcal{L}^{n-1}(A, \mathcal{L}^1(A/J, X^*)) \) with \(\psi_n T = \delta^n S \) where \(S \) is some element of \(\mathcal{L}^{n-1}(A, X^*) \). As in the above proof that \(\chi \) is an epimorphism, there is a bounded approximate identity \(\{e_n\} \) in \(J \) and an \(R \) in \(\mathcal{L}^{n-2}(A, X^*) \) such that
\[
R(a_1, \ldots, a_{n-2}) = (-1)^n \lim S(a_1, \ldots, a_{n-2}, e_n)
\]
for all \(a_1, \ldots, a_{n-2} \) in \(A \). If \(a_{n-1} \) is in \(J \) and if \(a_1, \ldots, a_{n-2} \) are in \(A \), then
\[
\delta^{n-1} R(a_1, \ldots, a_{n-1})
= (-1)^n \lim \left\{ a_1 S(a_2, \ldots, a_{n-1}, e_n) + \sum_{j=1}^{n-2} (-1)^j S(a_1, \ldots, a_j a_{j+1}, \ldots, a_{n-1}, e_n)
+ (-1)^{n-1} S(a_1, \ldots, a_{n-2}, e_n) a_{n-1} \right\}
= (-1)^n \lim \left\{ \delta^n S(a_1, \ldots, a_{n-1}, e_n) + (-1)^n S(a_1, \ldots, a_{n-2}, a_{n-1} e_n) \right\}
\]
because \(a_{n-1} \) and \(e_n \) are in \(J \), which annihilates \(X^* \). Since \(\delta^n S = \psi_n T \), it follows that \(\delta^n S(a_1, \ldots, a_{n-1}, e_n) = 0 \) because \(e_n \) is in \(J \). This completes the proof of the lemma.

Proof of Theorem 1. The definitions of \(\theta \) and \(\delta^n \) imply that \(\delta^n \theta = \theta \delta^n \). Thus the mapping \(\theta \), defined in the statement of the theorem, is a well defined homomorphism from \(\mathcal{H}^n(A/J, X^*) \) into \(\mathcal{H}^n(A, X^*) \). We shall prove that \(\theta \) is an isomorphism by induction on \(n \) over all Banach \(A \)-modules that are annihilated by \(J \).

Now we consider \(n=1 \). If \(f \) is in \(X^* \), then \(\delta^1(f)(a) = af - fa = (a+J)f - f(a+J) = \delta^1(f)(a+J) = (\theta \delta^1(f))(a) \) by definition of \(\delta^1 \), so that \(\theta \) Im \(\delta^1 = \text{Im} \delta^1 \). If \(D \) is in \(\text{Ker} \delta^1 \), which is contained in \(\mathcal{L}^1(A, X^*) \), then \(D(ab) = D(a)b + aD(b) \) for all \(a, b \) in \(A \) by definition of \(\delta^2 \). If \(c \) is in \(J \), then by Cohen's Factorization Theorem [1] we have \(c = ab \) for some \(a \) and \(b \) in \(J \). Thus \(D(c) = aD(b) + D(a)b = 0 \) because \(J \) annihilates \(X^* \). We may now define an operator \(\theta \) in \(\mathcal{L}^1(A/J, X^*) \) by \(\theta(a+J) = D(a) \) for all \(a \) in \(A \). Then \(\theta \) is \(D \), and \(\delta^2 T = 0 \). This shows that \(\theta \) is an isomorphism for \(n=1 \).
Suppose the result has been proved for \(n \). We firstly observe that
\(L^0(A/J, X^*) \) is, as a Banach \(A \)-module, the dual of the Banach \(A \)-module
\(Y = (A/J) \hat{\otimes} X \), the projective tensor product of Banach spaces [5, §1],
where we define the module operations on generating elements \((a+J) \hat{\otimes} x\) of the tensor product by

\[
\begin{align*}
 b((a + J) \hat{\otimes} x) &= (ba + J) \hat{\otimes} x \quad \text{and} \\
 ((a + J) \hat{\otimes} x)b &= (a + J) \hat{\otimes} xb
\end{align*}
\]

and lift the definitions to \(Y \) by linearity and continuity. Because \(J \) annihilates \(X \), equations (7) imply that \(J \) annihilates the \(A \)-module \(Y \). Now by Lemma 2, our inductive hypothesis on \(n \), and the reduction of dimension lemma for cohomology [5, 1(a)], the following isomorphisms hold:

\[
\mathcal{H}^{n+1}(A, X^*) \cong \mathcal{H}^{n}(A, L^0(A/J, X^*)) \cong \mathcal{H}^{n}(A/J, L^0(A/J, X^*)) \cong \mathcal{H}^{n+1}(A/J, X^*).
\]

Each of these isomorphisms is the natural one arising from the quotient \(A/J \). Thus \(Q \) is an isomorphism for \(n+1 \). This completes the proof.

Our corollary generalizes [4, Theorems 4.1 and 4.2] from \(n=1 \) and 2 to any positive integer \(n \).

Corollary 3. Let \(A \) be a Banach algebra in which each closed cofinite ideal has a bounded approximate identity. If \(X \) is a finite dimensional Banach \(A \)-module and \(n \) is a positive integer, then \(J^n(A, X) = \{0\} \).

Proof. The annihilator \(J \) of \(X \) is a closed cofinite ideal in \(A \), and \(X \) is the dual of the Banach \(A \)-module \(X^* \). By Theorem 1, we have \(\mathcal{H}^n(A, X) \) isomorphic to \(\mathcal{H}^n(A/J, X) \). An ideal in \(A/J \) is of the form \(I/J \), where \(I \) is a closed cofinite ideal in \(A \) containing \(J \). Since \(I \) has a bounded approximate identity, \(I/2 \) is equal to \(I \) by Cohen's Factorization Theorem [1]. This shows that \(A/J \) is a finite dimensional semisimple algebra. As every \(n \)-linear operator from \(A/J \) into \(X \) is continuous, \(\mathcal{H}^n(A/J, X) \) coincides with Hochschild's cohomology groups [3] for the \(A/J \)-module \(X \). Hochschild's \(n \)th-cohomology group for the \(A/J \)-module \(X \) is null [3, Theorem 4.1], and so \(\mathcal{H}^n(A, X) = \{0\} \).

Remark 4. We now outline an example which shows that some assumption on \(J \) like that of a bounded approximate identity is necessary if the conclusion of Theorem 1 is to hold. Let \(X \) be a (finite dimensional) Banach space, and let \(X \) have the zero product (\(xy=0 \) for all \(x, y \) in \(X \)). Let \(A \) be the Banach algebra obtained by adjoining an identity to \(X \), and let the ideal \(J \) be \(X \). We regard \(X \) as an \(A \)-module with the natural module operations. Then \(A/J \) is equal to \(C^1 \), and so \(\mathcal{H}^1(A/J, X^*) \) is zero as may be proved in a number of ways (for example [3, Theorem 4.1]). However
for the algebra A we obtain $\text{Im} \, \delta^1$ is $\{0\}$, and $\text{Ker} \, \delta^2$ is $\mathcal{L}^1(J, X^*)$, so that $\mathcal{A}^1(A, X^*) = \mathcal{L}^1(J, X^*)$ and the conclusion of Theorem 1 does not hold.

REFERENCES

Department of Mathematics, University of Edinburgh, Edinburgh, Scotland

Department of Mathematics, University of The Witwatersrand, Johannesburg, South Africa (Current address)