Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a construction of Bredon


Author: Joseph Roitberg
Journal: Proc. Amer. Math. Soc. 33 (1972), 623-626
MSC: Primary 57D55
DOI: https://doi.org/10.1090/S0002-9939-1972-0295370-4
MathSciNet review: 0295370
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a homotopy-theoretical description of a geometric pairing due to Bredon, we show how to rederive Bredon's results on the pairing. Furthermore, we are able to, in some sense, complete these results by combining the homotopy-theoretical approach with Sullivan's determination of the 2-primary Postnikov decomposition of the space G/PL.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Bredon, A $ {\Pi_\ast }$-module structure for $ {\Theta_\ast }$ and applications to transformation groups, Ann. of Math. (2) 86 (1967), 434-448. MR 36 #4570. MR 0221518 (36:4570)
  • [2] J. Levine, A classification of differentiable knots, Ann. of Math. (2) 82 (1965), 15-50. MR 31 #5211. MR 0180981 (31:5211)
  • [3] J. Roitberg, PL invariants on a smooth manifold, Thesis, New York University, New York, 1968.
  • [4] D. Sullivan, Triangulating homotopy equivalences, Thesis, Princeton University, Princeton, N.J., 1965.
  • [5] R. Williamson, Jr., Cobordism of combinatorial manifolds, Ann. of Math. (2) 83 (1966), 1-33. MR 32 #1715. MR 0184242 (32:1715)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D55

Retrieve articles in all journals with MSC: 57D55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0295370-4
Keywords: Bredon pairing, differential structures on spheres, PL/O, Kervaire-Milnor construction $ {p_l}(\sigma )$, homotopy spheres bounding $ \pi $-manifolds, G/PL
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society