Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quotient and pseudo-open images of separable metric spaces


Author: Paul L. Strong
Journal: Proc. Amer. Math. Soc. 33 (1972), 582-586
MSC: Primary 54B15; Secondary 54E35
DOI: https://doi.org/10.1090/S0002-9939-1972-0300253-7
MathSciNet review: 0300253
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Ernest A. Michael has given a characterization of the regular quotient images of separable metric spaces. His result is generalized here to a characterization of the $ {T_1}$ quotient images of separable metric spaces (which are the same as the $ {T_1}$ quotient images of second countable spaces). This result is then used to characterize the Hausdorff pseudo-open images of separable metric spaces.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Arhangel'skiĭ, Mappings and spaces, Uspehi Mat. Nauk 21 (1966), no. 4 (130), 133-184 = Russian Math. Surveys 21 (1966), no. 4, 115-162. MR 37 #3534. MR 0227950 (37:3534)
  • [2] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. MR 31 #5184. MR 0180954 (31:5184)
  • [3] -, Spaces in which sequences suffice. II, Fund. Math. 61 (1967), 51-56. MR 36 #5882. MR 0222832 (36:5882)
  • [4] Joe A. Guthrie, A characterization of $ {\aleph _0}$-spaces, Gen. Topology Appl. 1 (1971), 105-110. MR 0288726 (44:5922)
  • [5] E. A. Michael, $ {\aleph _0}$-spaces, J. Math. Mech. 15 (1966), 983-1002. MR 34 #6723. MR 0206907 (34:6723)
  • [6] Frank Siwiec, Sequence-covering and countable bi-quotient mappings, Gen. Topology Appl. 1 (1971), 143-154. MR 0288737 (44:5933)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B15, 54E35

Retrieve articles in all journals with MSC: 54B15, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0300253-7
Keywords: Fréchet spaces, sequential spaces, network, k-network, cs-network, $ {\aleph _0}$-spaces, sequence-covering mappings, quotient mappings, pseudo-open mappings, separable metric spaces, second countable spaces
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society