Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Implicative homomorphisms with finite ranges


Author: William C. Nemitz
Journal: Proc. Amer. Math. Soc. 33 (1972), 319-322
MSC: Primary 06A25
DOI: https://doi.org/10.1090/S0002-9939-1972-0307992-2
MathSciNet review: 0307992
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, it is shown that every implicative homomorphism with a finite range is a factor of a projection.


References [Enhancements On Off] (What's this?)

  • [1] Garrett Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R.I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [2] H. B. Curry, Foundations of mathematical logic, McGraw-Hill, New York, 1963. MR 26 #6036. MR 0148529 (26:6036)
  • [3] Orrin Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514. MR 25 #3869. MR 0140449 (25:3869)
  • [4] W. C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128-142. MR 31 #1212. MR 0176944 (31:1212)
  • [5] -, Semi-Boolean lattices, Notre Dame J. Formal Logic 10 (1969), 235-238. MR 39 #6794. MR 0245486 (39:6794)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A25

Retrieve articles in all journals with MSC: 06A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0307992-2
Keywords: Implicative semilattice, implicative homomorphism, pseudocomplement
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society