Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Martin's axiom and saturated models


Authors: Erik Ellentuck and R. v. B. Rucker
Journal: Proc. Amer. Math. Soc. 34 (1972), 243-249
MSC: Primary 02K05
DOI: https://doi.org/10.1090/S0002-9939-1972-0290960-7
MathSciNet review: 0290960
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ {2^{{\aleph _0}}} > {\aleph _1}$ is consistent with the existence of an ultrafilter F on $ \omega $ such that for every countable structure $ \mathfrak{A}$ the ultrapower $ {\mathfrak{A}^\omega }/F$ is saturated.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02K05

Retrieve articles in all journals with MSC: 02K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0290960-7
Keywords: Saturation, ultraproduct, Martin's axiom
Article copyright: © Copyright 1972 American Mathematical Society