A NONNORMAL OUTER FUNCTION IN H^p

LEON BROWN AND LOWELL HANSEN

Abstract. In this paper we construct an outer function in H^p for all p which is not normal.

The purpose of this note is to answer a question raised by Professor Joseph Cima; namely, we show the existence of nonnormal outer functions which are in H^p. See [1] for relevant definitions.

The existence of a function in H^p for all p which is not normal easily follows from a theorem of P. Lappan [2, p. 190] which says that given an unbounded function f, holomorphic on the unit disc D, then there exists a Blaschke product B such that Bf is not normal. However Bf is clearly not outer.

We shall construct an outer function with two different asymptotic values at $z=1$, which will imply by a theorem of O. Lehto and K. I. Virtanen that this function is not normal.

THEOREM [3, THEOREM 2, p. 53]. Let f be meromorphic and normal in G, and let f have an asymptotic value α at a boundary point P along a Jordan curve lying in the closure of G. Then f possesses the angular limit α at the point P.

We present the example.

$$f(z) = \frac{1}{z} \log \left(\frac{1+z}{1-z} \right) \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log t \, dt \right) = \frac{1}{z} F_1 F_2.$$

Proof. $f \in H^p$ for all p since F_2 is bounded and F_1 is in H^p for all p. From the representation theorem of outer functions, we have that F_2 is outer. Furthermore, F_1 is a schlicht function and by Theorem 3.17 in [1, p. 51] the singular part of F_1 is identically one. Thus F_1/z is an outer function and hence f is an outer function. Finally, it is an elementary calculation to show that

$$\lim_{\theta \to 0^+} |f(e^{i\theta})| = 0 \quad \text{and} \quad \lim_{\theta \to 2\pi^-} |f(e^{i\theta})| = \infty.$$

Received by the editors March 8, 1971.

AMS 1969 subject classifications. Primary 3030, 3067; Secondary 3062.

Key words and phrases. Normal functions, outer functions in H^p.

© American Mathematical Society 1972

175
Thus by the above stated theorem, f is not normal and has all the desired properties.

An examination of the above example yields the following result:

Lemma. Given $\psi : [0, 2\pi] \to \mathbb{R}^+$ with

(a) $\psi \in L^p$,
(b) $\log \psi \in L^1$,
(c) $\lim_{t \to 0^+} \psi(t) = 0$,
(d) $\lim_{t \to 2\pi^-} \psi(t) = +\infty$,

then

$$\exp \left(\frac{1}{2\pi} \int_0^{2\pi} \left(\frac{e^{it} + z}{e^{it} - z} \right) \log \psi(t) \, dt \right)$$

is an outer function in H^p which is not normal.

References

Department of Mathematics, Wayne State University, Detroit, Michigan 48202