NIL ALGEBRAS SATISFYING AN IDENTITY
OF DEGREE THREE
RAYMOND COUGHLIN

Abstract. Let A be a nonassociative algebra over a field F with a function $g: A \times A \times A \rightarrow F$ such that $(xy)z = g(x, y, z)x(yz)$ for all $x, y,$ and z in A. Algebras satisfying this identity have been studied by Michael Rich and the author. It is shown here that a finite-dimensional nil power-associative algebra satisfying the above identity is nilpotent.

Let A be an algebra over a field F with a function $g:A \times A \times A \rightarrow F$ such that

$$ (xy)z = g(x, y, z)x(yz) $$

for all x, y, z in A. Semisimple algebras satisfying (1) and

$$ x^2x = xx^2 $$

have been studied by Michael Rich and the author [2]. A power-associative algebra A is an algebra A such that for every x in A the subalgebra generated by x in A is associative. A nil power-associative algebra is an algebra in which for every x there exists an integer $n(x)$ such that $x^{n(x)}=0$. An algebra is nilpotent if there exists an integer n such that $A^n=0$. It is shown that a finite-dimensional nil power-associative algebra satisfying (1) is nilpotent. Throughout this paper we will assume that all algebras are finite dimensional and power-associative. We define the associator $(x, y, z) = (xy)z - x(yz)$. The linearization of (2) is

$$ (x, y, z) + (y, z, x) + (z, x, y) + (x, z, y) + (z, y, x) + (y, x, z) = 0. $$

We define $R(x)$ and $L(x)$ to be the usual endomorphisms on $AxR(x)=zx$ and $zL(x)=xz$. We can then write (1) in the form

$$ zR(a)R(b) = azR(ab), $$

$$ zL(a)R(b) = \beta zR(b)L(a) $$
for all \(z, a, b \) in \(A \) and \(x = g(z, a, b), \beta = g(a, z, b) \in F \). Throughout we assume that the characteristic of \(F \neq 2 \).

We begin with

Theorem 1. If \(A \) is an algebra over \(F \) satisfying (1) with \(x^N = 0 \), then the ring \(\mathcal{R} \) generated by the right and left multiplications by powers of \(x \) is a nilpotent ring.

Proof. From (1) we can write

\[
(6) \quad zL(x^n) = axL(x)^n
\]

for any \(z \) in \(A \) and where \(a \in F \) depends upon \(z, x \) and \(n \). For any element \(S \) in \(\mathcal{R} \) and \(z \) in \(A \) we can use (5) to pass all the right multiplications to the left and then use (4) and (5) to write \(zS \) as a linear combination of terms of the form \(zS = azR(x^m)L(x)^r \) for some \(a \in F \). Now let \(T \in \mathcal{R} \) and consider \(T^k \) where \(k = N + 2^N(N+1) \). We can write \(zT \) as a linear combination of terms of the form

\[
(7) \quad azR(x^m)L(x)^r
\]

where \(r \geq 2^N(N+1) \). We can choose a nonzero expression of this form such that \(r \) is minimal. From (3) we have

\[
(8) \quad zL(x^2) = zL(x^2) + \beta_1 zR(x^2) + \beta_2 zR(x)L(x)
\]

where \(\beta_1, \beta_2 \in F \). Into (7) substitute (8) for the two leftmost \(L(x) \)'s. By our choice of \(r \), (7) is equal to

\[
(9) \quad azR(x^m)L(x^2)L(x)^{r-2}.
\]

Into (9) substitute (8) again for the two leftmost \(L(x) \)'s and, continuing this process, we get that (7) is equal to

\[
(10) \quad azR(x^m)L(x^2)^{r_1}I_1(x)
\]

when \(I_1(x) \) is the identity operator or \(L(x) \), depending upon whether \(r \) is even or odd. Note that (6) allows us to still utilize the choice of \(r \) and hence to conclude that \(r_1 \) is minimal. Replace \(x \) by \(x^2 \) in (8) and then use this same process to write (10) in the form \(azR(x^m)L(x^4)^{r_j}I_q \) where \(I_q \) is either the identity operator, \(L(x) \), \(L(x^2) \) or \(L(x^3)L(x) \). In the same manner, again noting that (6) and the choice of \(r \) imply that \(r_{j-1} \) is minimal, we can write (10) in the form \(azR(x^m)L(x^4)^{r_j}I_q \). By the choice of \(r \) we have \(n_j \geq N \) for large enough \(j \) and this \(T^k = 0 \).

We denote by \(M(A) \) the associative algebra generated by the right and left multiplications of \(A \). If \(B \) is any subalgebra of \(A \) then \(B^* \) is the subalgebra of \(M(A) \) generated by the right and left multiplications of \(B \).
that is, every element in B^* is a linear combination of terms of the form $S_1S_2\cdots S_n$ where each S_i is a right or left multiplication by an element in B.

Theorem 2. Any finite-dimensional nil algebra A over F satisfying (1) is nilpotent.

Proof. As in the proof that any alternative nil algebra of finite dimension is nilpotent [3, p. 30], we let B be a subalgebra of A which is maximal with respect to the property that B^* is nilpotent. Since the subalgebra $\{0\}$ has the property and A is finite dimensional, such a maximal B exists. We assume that B is a proper subalgebra of A and so there exists an element x not in B such that

$$x B^* \subseteq B. \tag{11}$$

We let

$$C = B + F[x], \tag{12}$$

so that $C^* = (B + F[x])^*$. We will show that C^* is a nil algebra. Let $T \in C^*$. From (5) we can systematically pass all the right multiplications to the left and from (4) and (11) we can assume that each right multiplication is in B^*. Note that in this new expression for zT the number of factors from B^* is preserved. Hence we can assume that zT is of the form

$$az R(b_1) R(b_2) \cdots R(b_r) L(a_1) L(a_2) \cdots L(a_s)$$

where the $a_i \in B$ or Fx, $a \in F$ and $z \in A$.

Now from (3) we can replace any $L(x)L(b)$ for $b \in B$ by a linear combination of terms of the form $L(b)L(x)$, $R(xb)$, $R(bx)$, $L(bx)$, $L(x)R(b)$, $L(b)R(x)$, $R(x)R(b)$, $R(b)L(x)$. Utilizing (4), (5) and (11) allows us to replace $L(x)L(b)$ by a linear combination of terms of the form $L(b)L(x)$, $R(b_1)$, $L(b_2)$, $R(x)L(b_3)$, $R(b_4)L(x)$. As before, all the right multiplications can be passed to the left and each $R(x)$ is enveloped by an $R(b)$. Hence for any T in C^*, zT can be written as a linear combination of terms of the form

$$az R(b_1) R(b_2) \cdots R(b_r) L(b_{r+1}) \cdots L(b_s)L(x)^i$$

or of the form

$$az R(x^i) L(b_1) L(b_2) \cdots L(b_s)L(x)^i$$

where the number of factors from B^* is constant. If $B^{*N}=0$ and $x^m=0$, we have $T^{2nm\tilde{m}}=0$, where \tilde{m} is the index of nilpotency of the ring mentioned in Theorem 1, because we have either n factors from B^* on the left or an element from $\{L(x)\}^\tilde{m}=0$, from Theorem 1. Hence every element of the
finite-dimensional associative algebra C^* is nilpotent, and so C^* is nilpotent [1, p. 23]. But B was maximal with respect to the property of having B^* nilpotent, so we have a contradiction, implying that B is not a proper subalgebra of A. Thus $A = B$ and A^* is nilpotent. It follows [3, p. 18] that A is nilpotent.

REFERENCES

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122