Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On closed additive semigroups in $ E\sp{n}$


Author: Christoph Bandelow
Journal: Proc. Amer. Math. Soc. 34 (1972), 87-89
MSC: Primary 22A15; Secondary 50A05, 60J15
DOI: https://doi.org/10.1090/S0002-9939-1972-0292993-3
MathSciNet review: 0292993
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C(A)$ be the closed additive semigroup generated by a set $ A \subset {E^n}$. A simple necessary and sufficient condition on A for $ C(A)$ to be a group is derived. An example which arose in the theory of random walks and stimulated these purely geometrical considerations is discussed at the end.


References [Enhancements On Off] (What's this?)

  • [1] C. Bandelow, Recurrence properties of functionals of Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 1-18. MR 0315788 (47:4337)
  • [2] K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc. No. 6 (1951), 1-12. MR 12, 722. MR 0040610 (12:722e)
  • [3] H. G. Eggleston, Convexity, Cambridge Tracts in Math. and Math. Phys., no. 47, Cambridge Univ. Press, New York, 1958. MR 23 #A2123. MR 0124813 (23:A2123)
  • [4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 3rd ed., Clarendon Press, Oxford, 1954. MR 16, 673. MR 0067125 (16:673c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A15, 50A05, 60J15

Retrieve articles in all journals with MSC: 22A15, 50A05, 60J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0292993-3
Keywords: Closed additive semigroup in $ {E^n}$, closed additive group in $ {E^n}$, convex set, random walk
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society