The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

SEPARABLE AND REFLEXIVE SPACES OF BOUNDED SEQUENCES

ALBERT WILANSKY

It is known ([1], [2], [4, p. 94, Example 9]) that every separable subspace X of m (the bounded sequences with $\|x\|_\infty = \sup |x_n|$) is included in $c_A = \{x : Ax \text{ is convergent}\}$ for some regular matrix A. The main contribution of this note is the following brief proof. Define $P_n \in X'$ by $P_n(x) = x_n$; then each P_n belongs to the unit disc of X'. Since the latter is weak* metrizable [5, p. 276, #116] $\{P_n\}$ has a weak* convergent subsequence $\{P_{k_n}\}$. But this means that $\{x_{k_n}\}$ is convergent for each $x \in X$, which yields the result. (Take A to be the identity matrix with all rows but the k_1, k_2, \cdots rows deleted.)

The same proof yields the stronger result of [2] that every regular matrix A has a row-submatrix B with $X \subseteq c_B$; for we apply the argument to the maps $x \rightarrow (Ax)_n$. We also get the same result for an arbitrary separable FK space X of bounded sequences, for since $X \subseteq m$, it is a separable subspace of m by [4, p. 203, Corollary 1].

The same results hold for any reflexive BK space of bounded sequences. Now, for $\|x\| \leq 1$, $|P_n(x)| = |x_n| \leq \|x\|_\infty \leq K \|x\| \leq K$ by [4, p. 203, Corollary 1], so all P_n are contained in a fixed disc in X'. The latter is weakly compact hence weakly sequentially compact [5, p. 271, Theorem 12.4.2; p. 297, Example 2] so the preceding proof can be repeated. It should be remarked that such a space cannot include c_0, indeed a weakly sequentially complete FK space which includes c_0 must properly include m (see [3]).

Received by the editors November 15, 1971.

AMS 1970 subject classifications. Primary 40H05, 46A25, 46A45.

Key words and phrases. Separable sequence space, reflexive sequence space, summability.

© American Mathematical Society 1972
REFERENCES

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PENNSYLVANIA 18015