ON TOEPLITZ OPERATORS WHICH ARE CONTRACTIONS

ROBERT GOOR

Abstract. We prove that a Toeplitz contraction T_ϕ is completely nonunitary if ϕ is not a constant. As an application, it is noted that for such T_ϕ, a functional calculus can be defined for all functions u in H^∞ of the unit disk.

For $1 \leq p \leq \infty$, we denote by L^p the usual class of Lebesgue measurable functions on the unit circle γ of the complex plane. We write H^p for the closed subspace of L^p of functions whose Fourier coefficients vanish on the negative integers. We denote by P the orthogonal projection of L^2 onto H^2 and by $B(H^2)$ the space of bounded operators on H^2. For $\phi \in L^\infty$, we consider the Toeplitz operator $T_\phi \in B(H^2)$ defined by $T_\phi f = P(\phi f)$ for $f \in H^2$. Following Sz.-Nagy and Foias [2], we say a contraction T_ϕ, $\| T_\phi \| \leq 1$, is completely nonunitary (c.n.u.) if T_ϕ has no nontrivial reducing subspaces restricted to which T_ϕ is unitary. We will use the fact that $T_{\phi^*} = T_\phi$ [1, p. 137].

Theorem. If $\phi \in L^\infty$, $\| \phi \|_\infty \leq 1$ and ϕ is not a constant (almost everywhere), then T_ϕ is c.n.u.

Proof. Suppose T_ϕ is not c.n.u. We will show that ϕ is constant.

Let S be a nontrivial reducing subspace for T_ϕ on which T_ϕ is unitary. We may write $S = \{ f \in H^2 : \| T_\phi f \|_2 = \| f \|_2 = \| T_{\phi^*} f \|_2 \text{ for } n = 1, 2, \ldots \}$. Now, for $f \in S$, $\| f \|_2 = \| T_\phi f \|_2 = \| T_{\phi^*} f \|_2 \leq \| \phi f \|_2 \leq \| f \|_2$ and the resulting equality gives $\phi f \in H^2$. Similarly, $\overline{\phi^*} f \in H^2$ for $n \geq 0$ and $f \in S$. We may apply the F. and M. Riesz theorem [1, p. 82] to the equality $\| \phi f \|_2 = \| f \|_2$ for a nonzero $f \in S$ to conclude that $|\phi| = 1$ almost everywhere on γ. Thus, we write $S = \{ f \in H^2 : \phi^* f, \overline{\phi^*} f \in H^2 \text{ for } n \geq 0 \}$.

Let M_z be the operator of multiplication by the coordinate function z. Then $\phi^* f \in H^2$ implies $z \phi^* f = \phi^* z f \in H^2$ and similarly for $\overline{\phi^*} z f$, i.e. $M_z S \subseteq S$. By Beurling's theorem [1, p. 79], there is a function $\psi \in H^\infty$, $|\psi| = 1$ almost everywhere, such that $S = \psi H^2$. Since $1 \in H^2$, ψ is in S. Note that $\phi \psi = \psi f$ for some $f \in H^2$ (since $\phi \psi \in S = \psi H^2$). Hence for

Received by the editors November 15, 1971.

AMS 1970 subject classifications. Primary 47B35, 47A20, 47A60; Secondary 46J15.

Key words and phrases. Toeplitz operator, contraction, completely nonunitary, reducing subspace, Beurling theorem, F. and M. Riesz theorem.
$n \geq 0$, we have

$$\int \phi z^n \, dz = \int (\phi \psi)(\bar{\psi}z^n) \, dz = \int (\psi f)(\bar{\psi}z^n) \, dz = \int fz^n \, dz = 0$$

which implies that $\phi \in H^\infty$. Similarly, $\bar{\phi} \in H^\infty$ implies ϕ is a constant.

Corollary. If $\|\phi\|_\infty \leq 1$ and if ϕ is not constant, then the map $u \mapsto u(T_\phi)$ from H^∞ into $B(H^2)$ defined by

$$u(T_\phi) = \lim_{r \to 1^-} \sum_{k=0}^\infty C_k r^k T_\phi^k,$$

where $u(\lambda) = \sum_{k=0}^\infty C_k \lambda^k \in H^\infty$ is a norm decreasing homomorphism of the algebra H^∞ into $B(H^2)$.

Proof. Apply the above theorem and Theorem 2.1, Chapter III of [2].

References

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104