REDUCIBILITY OF ISOMETRIC IMMERSIONS

JOHN DOUGLAS MOORE

Abstract. For i=1, 2, suppose that the connected riemannian manifold \(M_i \) possesses a codimension \(p_i \) euclidean isometric immersion whose first normal space has dimension \(p_i \) and whose type number is at least two at each point, and let \(N = \dim(M_1 \times M_2) + p_1 + p_2 \). In this note it is proven that if \(f \) is any isometric immersion from the riemannian product \(M_1 \times M_2 \) into euclidean \(N \)-space \(\mathbb{E}^N \), then there exists an orthogonal decomposition \(\mathbb{E}^N = \mathbb{E}^{N_1}_1 \times \mathbb{E}^{N_2}_2 \) together with isometric immersions \(f_1: M_1 \to \mathbb{E}^{N_1}_1 \) and \(f_2: M_2 \to \mathbb{E}^{N_2}_2 \) such that \(f = f_1 \times f_2 \).

An isometric immersion \(f \) from a riemannian product \(M_1 \times M_2 \) into \(N \)-dimensional euclidean space \(\mathbb{E}^N \) is said to be reducible if there is an orthogonal product decomposition \(\mathbb{E}^N = \mathbb{E}^{N_1}_1 \times \mathbb{E}^{N_2}_2 \) together with isometric immersions \(f_1: M_1 \to \mathbb{E}^{N_1}_1 \) and \(f_2: M_2 \to \mathbb{E}^{N_2}_2 \) such that \(f = f_1 \times f_2 \). It is known that if \(M_1 \) and \(M_2 \) are connected and their Riemann-Christoffel curvature tensors are nonzero almost everywhere, then every codimension two euclidean isometric immersion of \(M_1 \times M_2 \) is reducible [1], [5]. This note is devoted to a more general reducibility theorem.

To formulate the hypothesis for our theorem, we let \(V \) denote the tangent space to a riemannian manifold \(M \) at a point \(m \). The Riemann-Christoffel curvature tensor \(R \) at \(m \) can be regarded as an endomorphism of \(V \wedge V \) which is symmetric with respect to the inner product defined by the riemannian metric. We will say that \(M \) satisfies condition \(A(p) \) at \(m \) if there exist vectors \(u, v \in V \) such that \(R(u \wedge v) \) has rank at least \(2p \). (Recall that \(R(u \wedge v) \) has rank \(2p \) iff \(p \) is the largest integer such that \(R(u \wedge v)^\Lambda \cdot \ldots \cdot R(u \wedge v) \) (\(p \) times)\(\neq 0 \) [3, p. 55].)

Reducibility Theorem. For \(i=1, 2 \), let \(M_i \) be a connected riemannian manifold which satisfies condition \(A(p_i) \) almost everywhere, and let \(N = \dim(M_1 \times M_2) + p_1 + p_2 \). Then any isometric immersion of the riemannian product \(M_1 \times M_2 \) into \(\mathbb{E}^N \) is reducible.

Notice that if \(M_i \) possesses a codimension \(p_i \) euclidean isometric immersion \(f_i \) whose first normal space has dimension \(p_i \) and whose type number is at least two at each point (in the sense of Allendoerfer [2], [4, pp. 349–354]), then \(M_i \) satisfies condition \(A(p_i) \) everywhere. In this

Presented to the Society, August 10, 1971; received by the editors October 5, 1971.
Key words and phrases. Isometric immersion, riemannian product, type number.

© American Mathematical Society 1972

229
case the dimension N in the Reducibility Theorem is clearly optimal, because if $g: E^N \to E^{N+1}$ is a cylindrical isometric immersion, $g \circ (f_1 \times f_2): M_1 \times M_2 \to E^{N+1}$ will seldom be reducible. Reducibility is an uncommon phenomenon except in the lowest possible codimension.

M satisfies condition $A(1)$ wherever R is nonzero, i.e. at the nonflat points of M. Thus an induction based on the Reducibility Theorem and the following lemma will yield a generalization of Theorem 1 in [5].

Lemma 1. If the riemannian manifold M_i satisfies condition $A(p_i)$ at m_i for $i=1, 2$, then $M_1 \times M_2$ satisfies condition $A(p_1 + p_2)$ at (m_1, m_2).

To prove the lemma we note that the tangent space V to $M_1 \times M_2$ at (m_1, m_2) possesses an orthogonal direct sum decomposition $V = V_1 \oplus V_2$, where V_i consists of the vectors tangent to M_i. We regard $V_1 \wedge V_2$ as a subspace of $V \wedge V$. If $R_i: V_i \wedge V_i \to V_i \wedge V_i$ is the curvature tensor of M_i and $\pi_i: V \wedge V \to V_i \wedge V_i$ is the orthogonal projection, then

$$R = R_1 \circ \pi_1 + R_2 \circ \pi_2$$

is the curvature tensor of $M_1 \times M_2$. If condition $A(p_i)$ holds at m_i, then there exist vectors $u_i, v_i \in V_i$ such that $R_i(u_i \wedge v_i)$ has rank at least $2p_i$.

By (1),

$$R((u_1 + u_2) \wedge (v_1 + v_2)) = R_1(u_1 \wedge v_1) + R_2(u_2 \wedge v_2).$$

Since $R_i(u_i \wedge v_i) \in V_i \wedge V_i$, the sum on the right has rank at least $2(p_1 + p_2)$, which proves that condition $A(p_1 + p_2)$ is satisfied at (m_1, m_2).

Let $n = \dim(M_1 \times M_2)$ and $p = p_1 + p_2$ so that $N = n + p$. An isometric immersion $f: M_1 \times M_2 \to E^N$ and a choice of orthonormal basis for the normal space to $M_1 \times M_2$ at (m_1, m_2) determine p second fundamental forms Φ^i, $n + 1 \leq i \leq N$, at (m_1, m_2). The Φ^i's are symmetric bilinear forms on the tangent space V at (m_1, m_2), and they determine symmetric endomorphisms A^i of V by

$$\langle A^i(u), v \rangle = \Phi^i(u, v) \quad \text{for } u, v \in V,$$

where $\langle \ , \ \rangle$ denotes the riemannian metric. The A^i's in turn determine symmetric endomorphisms $A^i \wedge A^i$ of $V \wedge V$ which satisfy the Gauss equation

$$R = \sum_{i=1}^{N} A^i \wedge A^i.$$

Lemma 2. Suppose that the second fundamental forms Φ^i of an isometric immersion f from a connected riemannian product $M_1 \times M_2$ into E^N have the following property at every point (m_1, m_2) in $M_1 \times M_2$:

$$(3) \quad \Phi^i(w_1, w_2) = 0 \quad \text{for all } w_1 \in V_1, w_2 \in V_2, n + 1 \leq i \leq N.$$

Then f is reducible.
This lemma is proven in §2 of [5]. In order to use Lemma 2 to prove the Reducibility Theorem it suffices by continuity to show that hypothesis (3) holds at almost all points in $M_1 \times M_2$. By the hypothesis of the Reducibility Theorem and Lemma 1 it suffices to show that (3) holds at those points of $M_1 \times M_2$ at which condition $A(p)$ is satisfied.

Assume now that (m_1, m_2) is a point in $M_1 \times M_2$ at which condition $A(p)$ holds. Then we can choose vectors u, v in the tangent space V at (m_1, m_2) so that $R(u \wedge v)$ has rank at least $2p$. By equation (2),

$$R(u \wedge v) = \sum_{\lambda=n+1}^{N} A^\lambda(u) \wedge A^\lambda(v).$$

It follows that $R(u \wedge v)$ has rank exactly $2p$ and that the $2p$ vectors $A^\lambda(u)$, $A^\lambda(v)$, $n+1 \leq \lambda \leq N$, are linearly independent. Now let $u = u_1 + u_2$ and $v = v_1 + v_2$, where u_i, $v_i \in V_i$. Using (1) and (2) we see that

$$\sum_{\lambda=n+1}^{N} A^\lambda(u_1) \wedge A^\lambda(u_2) = R(u_1 \wedge u_2) = 0,$$

and we conclude that the $A^\lambda(u_1)$'s (and hence the $A^\lambda(u_2)$'s) lie in the subspace of V generated by the $A^\lambda(u)$'s; in fact, by Cartan's lemma,

$$A^\lambda(u_1) = \sum_{\mu=n+1}^{N} c_{\lambda}^\mu A^\mu(u), \quad c_{\lambda}^\mu = c_{\lambda}^\mu,$$

where the c_{λ}^μ's are real numbers. Similarly we can show that the $A^\lambda(v_1)$'s and the $A^\lambda(v_2)$'s lie in the span of the $A^\lambda(v)$'s. After a possible change of orthonormal basis for the normal space we can arrange that

$$A^\lambda(u_1) = c_{\lambda} A^\lambda(u), \quad A^\lambda(u_2) = (1 - c_{\lambda}) A^\lambda(u),$$

where $c_1 = 1$ for $n+1 \leq \lambda \leq q$, $c_\lambda \neq 0$, 1 for $q+1 \leq \lambda \leq r$, and $c_\lambda = 0$ for $r+1 \leq \lambda \leq N$. Equations (1), (2), and (4) now imply that

$$\sum_{\lambda=n+1}^{\ell} c_{\lambda} A^\lambda(u) \wedge A^\lambda(v_2) = \sum_{\lambda=n+1}^{N} A^\lambda(u_1) \wedge A^\lambda(v_2) = R(u_1 \wedge v_2) = 0,$$

$$\sum_{\lambda=q+1}^{N} A^\lambda(v_1) \wedge (1 - c_{\lambda}) A^\lambda(u) = 0.$$

Therefore $A^{q+1}(v_2), \ldots, A^{\ell}(v_2)$ and $A^{q+1}(v_1), \ldots, A^{N}(v_1)$ are in the span of the $A^\lambda(u)$'s. But they are also in the span of the $A^\lambda(v)$'s, and since the $A^\lambda(u)$'s and the $A^\lambda(v)$'s are linearly independent we must have

$$A^\lambda(v_2) = 0 \text{ for } n+1 \leq \lambda \leq r, \quad A^\lambda(v_1) = 0 \text{ for } q+1 \leq \lambda \leq N.$$
In particular the vectors $A^q(v)$, $q+1 \leq \lambda \leq r$, must vanish, and since these vectors are linearly independent, $q=r$.

We adopt the following index conventions: $n+1 \leq a \leq q$, $q+1 \leq \rho \leq N$. Then $c_a=1$, $c_{\rho}=0$, and it follows from (4) and (5) that

$$
A^q(u_1) = A^a(u), \quad A^q(v_1) = A^a(v), \quad A^\rho(u_1) = A^\rho(v_1) = 0.
$$

Hence if $w_2 \in V_2$,

$$
\sum_a A^a(u) \wedge A^a(w_2) = \sum_{a=n+1}^{N} A^a(u_1) \wedge A^a(w_2) = R(u_1 \wedge w_2) = 0,
$$

$$
\sum_a A^a(v) \wedge A^a(w_2) = 0.
$$

Since the $2(q-n)$ vectors $A^a(u)$, $A^a(v)$ are linearly independent, we can conclude that $A^a(w_2)=0$. Similarly we can show that $A^\rho(w_2)=0$ when $w_1 \in V_1$. Therefore

$$
\Phi^a(w_1, w_2) = \langle w_1, A^a(w_2) \rangle = 0, \quad \Phi^\rho(w_1, w_2) = \langle A^\rho(w_1), w_2 \rangle = 0,
$$

for $w_1 \in V_1$, $w_2 \in V_2$. This establishes (3) at (m_1, m_2) and finishes the proof of the Reducibility Theorem.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106