ON THE NOETHERIAN-LIKE RINGS OF E. G. EVANS

WILLIAM HEINZER AND JACK OHM

Abstract. It is shown that if a commutative ring with identity
R is nonnoetherian, then the polynomial ring in one indeterminate
over R has an ideal with infinitely many maximal prime divisors
(in the sense of Nagata).

Let R denote a commutative ring with 1, and for any ideal A of R, let
\(\mathcal{Z}(A) = \{ r \in R \mid \text{there exists } s \in R \setminus A \text{ such that } rs \in A \} \). (By “ideal” we
shall always mean ideal \(\neq R \). The notation \(R \setminus A \) denotes the set-comple-
ment of A in R.) \(\mathcal{Z}(A) \) is merely the set of zero-divisors on the R-module
\(R/A \) and is always a union of prime ideals of R. Evans [1] calls R a \(ZD \)-
ring (zero-divisor ring) if for any ideal A of R, \(\mathcal{Z}(A) \) is a union of finitely
many prime ideals. We shall prove here the following:

Theorem. R is noetherian if (and only if) the polynomial ring in one
indeterminate \(R[X] \) is a \(ZD \)-ring.

Evans has proved in [1] the 2 indeterminate analogue of this theorem
(which follows from the theorem) and the special case of the theorem for
R containing an infinite field.

A prime ideal P of R such that P is maximal with respect to the property
of being contained in \(\mathcal{Z}(A) \) is called a maximal \(N \)-prime (for Nagata-
prime) of A. Note that such a prime contains A and that \(\mathcal{Z}(A) \) is the union
of the maximal \(N \)-primes of A. (See [2] and [4] for a perspective on the
associated primes of an ideal.)

Proof of Theorem. Suppose R is not noetherian. Then there exists
a strictly ascending chain \((0) < (a_1) < (a_1, a_2) < \cdots < (a_1, \cdots, a_n) < \cdots \)
of ideals of R. Let \(f_0 = X, f_1 = 1 + X, \cdots, f_i = 1 + f_0 f_1 \cdots f_{i-1}, \cdots \). We wish
to show that the ideal \(A = (a_1 f_1, a_2 f_1 f_2, \cdots, a_n f_1 \cdots f_n, \cdots) \) in \(R[X] \)
has an infinite number of maximal \(N \)-primes and hence has the property that
\(\mathcal{Z}(A) \) is not a finite union of prime ideals. We show first that each \(f_i \in \mathcal{Z}(A) \).
Since \(A \subseteq (f_1) \) and \(f_1 \) is a monic polynomial of positive degree in \(R[X] \),
it follows that \(A \cap R = (0) \). Hence \(a_1 \notin A \), so \(a_1 f_1 \in A \) implies that \(f_1 \in \mathcal{Z}(A) \).
Similarly, to show \(f_n \in \mathcal{Z}(A) \), we wish to show \(a_n f_1 \cdots f_{n-1} \notin A \). Consider

Received by the editors September 16, 1971.
Key words and phrases. Noetherian ring, zero-divisor ring, maximal \(N \)-prime.
1 The authors were supported by National Science Foundation grants GP-29326 and
GP-29104.

© American Mathematical Society 1972

73
the residue class ring \(R/(a_1, \ldots, a_{n-1}) = R' \). The image of the ideal \(A \) in \(R'[X] \) is generated by the elements \(a'_n f_1' \cdots f'_{n-1}, a'_{n+1} f_1' \cdots f'_{n+1}, \ldots \), where "'" denotes image in \(R'[X] \). It will suffice to show that

\[
(a'_n f_1' \cdots f'_{n-1}) \subseteq (a'_n f_1' \cdots f'_{n-1}, a'_{n+1} f_1' \cdots f'_{n+1}, \ldots);
\]

and since \(f_1' \cdots f'_{n-1} \) is a monic polynomial in \(R'[X] \), this is equivalent to showing that \(a'_n \notin (a'_n f_1', a'_{n+1} f_n f'_{n+1}, \ldots) \subseteq (f'_n) \). Since \(f'_n \) is a monic polynomial of positive degree in \(R'[X] \), we have \((f'_n) \cap R' = (0) \). Thus \(a'_n \notin (a'_n f_1', a'_{n+1} f_n f'_{n+1}, \ldots) \); hence we have proved \(f_n \in \mathcal{Z}(A) \).

Consider now \(f_i \) and \(f_j \) for \(i \neq j \). Clearly no prime ideal of \(R[X] \) contains both \(f_i \) and \(f_j \). Since each \(f_i \) is in \(\mathcal{Z}(A) \) and hence is in some maximal \(N \)-prime of \(A \), it then follows that \(A \) has infinitely many maximal \(N \)-primes. Q.E.D.²

A Lasker ring is one for which every ideal is a finite intersection of primary ideals. Such rings have been studied by Krull [3], and Evans has observed that every Lasker ring is a ZD-ring. Thus a consequence of the above theorem is that \(R \) is noetherian if (and only if) \(R[X] \) is Lasker.

We can add one further bit of information on the relationship between the ZD and noetherian properties.

Proposition. If \(R \) is a ZD-ring and \(R_P \) is noetherian for every prime ideal \(P \) of \(R \), then \(R \) is noetherian.

Proof. By [2, Corollary 1.4] it suffices to show that every ideal \(A \) of \(R \) has only finitely many \(B_w \)-primes (a \(B_w \)-prime, or weak-Bourbaki prime, of \(A \) is a prime ideal \(P \) such that \(P \) is a minimal prime divisor of \(A \): \(x \) for some \(x \in R \)). If \(P \) is a \(B_w \)-prime of \(A \), then \(P \) is contained in a maximal \(N \)-prime of \(A \); and since \(R \) is a ZD-ring, \(A \) has only a finite number of maximal \(N \)-primes, say \(Q_1, \ldots, Q_n \). Moreover, \(P \) is a \(B_w \)-prime of \(A \) in \(R \) and \(P \subseteq Q_i \) imply \(P R_{Q_i} \) is a \(B_w \)-prime of \(AR_{Q_i} \) [2, Proposition 1.2]. Since \(R_{Q_i} \) is noetherian, \(AR_{Q_i} \) has only a finite number of \(B_w \)-primes. Hence \(A \) can have only finitely many \(B_w \)-primes.

References

Department of Mathematics, Purdue University, Lafayette, Indiana 47907

² We are indebted to the referee for suggesting a judicious choice of the \(f_i \)'s, thus considerably shortening our original proof.