NONUNIQUENESS OF COEFFICIENT RINGS
IN A POLYNOMIAL RING

M. HOCHSTER

Abstract. An example is given of commutative rings B, C with 1 such that \(B \cong C \) but \(B[t] \ncong C[t] \), where \(t \) is an indeterminate.

Several authors \([1], [2], [3]\) have recently studied the question, if \(B[t] \cong C[t] \) (\(B, C \) are commutative rings with 1, \(t \) is an indeterminate), does \(B \cong C \) follow? A simple counterexample is given below.

Let \(R \) be the reals and let \(P, Q, t, U, V, W, X, Y, Z \) be indeterminates. Let \(A = R[X, Y, Z]/(X^2 + Y^2 + Z^2 - 1) = R[x, y, z] \). Let \(\phi: A^3 \to A \) by \(\phi(a, b, c) = ax + by + cz \). Then \(\phi \) splits: map \(a \) to \(a(x, y, z) \). \(E = \ker \phi \) is well known to be a rank 2 projective which is not free, and hence requires 3 generators (that \(E \) is not free may be deduced from the fact that the tangent bundle of the real 2-sphere has no nonvanishing continuous sections). The splitting of \(\phi \) shows that \(A^3 \cong E \oplus A \). If we pass to symmetric algebras, we obtain the isomorphisms

\[
S(A^3) \cong A[P, Q, t] \cong S(E) \oplus A \quad S(A) \cong S(E) \otimes_A A[t] \cong S(E)[t],
\]

and since \(E \cong A^3/(x, y, z)A \),

\[
S(E) \cong A[U, V, W]/(xU + yV + zW).
\]

Let \(B = A[P, Q] \) and \(C = A[U, V, W]/(xU + yV + zW) \). We have shown that \(B[t] \cong C[t] \). It remains only to show that \(B \ncong C \). Suppose \(h: B \cong C \). \(B \) and \(C \) are \(A \)-subalgebras of the polynomial ring \(B[t] = A[P, Q, t] \) over \(A \). It is easy to show that the only invertible elements of \(A \), hence of \(B[t] \), and therefore of \(B \) and \(C \), are the nonzero real numbers. Since \(R \) has no nontrivial automorphisms, \(h \) must be an \(R \)-isomorphism. It is easy to check that \(A \) is a formally real domain. If \(D \) is a formally real domain and \(T \) is an indeterminate over \(D \), the only solutions of \(X^2 + Y^2 + Z^2 = 1 \) in \(D[T] \) already lie in \(D \). Hence, the only solutions of this equation in \(B[t] \) lie in \(A \), and the same holds for \(B \) and \(C \). Thus, \(h(A) \subset A \), and \(h^{-1}(A) \subset A \). After composing \(h \) with the automorphism of \(B \) which agrees with \(h^{-1} \) on \(A \) and fixes \(P, Q \), we can assume that \(h \) is an \(A \)-isomorphism of \(B \) and \(C \).
graded A-algebra. It follows that there are two elements $c = c_0 + c_1 + \cdots$, $c' = c'_0 + c'_1 + \cdots$ (where c_i or c'_i is the i-form component of c or c') such that $C = A[c, c'] = A[c - c_0, c' - c'_0]$. It follows easily that c_1, c'_1 span the A-module of 1-forms of C. But this module is isomorphic to E, and E requires three generators, a contradiction. Thus, $B \neq C$.

A similar example has been noted by M. P. Murthy (unpublished).

BIBLIOGRAPHY

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455