Local degree of separability and invariance of domain

Author:
L. B. Treybig

Journal:
Proc. Amer. Math. Soc. **34** (1972), 273-279

MSC:
Primary 54A25

DOI:
https://doi.org/10.1090/S0002-9939-1972-0295278-4

MathSciNet review:
0295278

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In an invariance of domain theorem may be proved assuming the Jordan Brouwer Theorem. In this paper such a theorem is proved for various locally compact, connected, Hausdorff spaces which satisfy a certain local degree of separability property. An example shows the separability condition may not be removed. A second theorem yields additional information about homogeneous spaces which satisfy the hypotheses of the first theorem.

**[1]**W. W. Babcock,*On linearly ordered topological spaces*, Dissertation, Tulane University, New Orleans, La., 1964.**[2]**Marvin J. Greenberg,*Lectures on algebraic topology*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0215295****[3]**John G. Hocking and Gail S. Young,*Topology*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR**0125557****[4]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[5]**R. L. Moore,*Foundations of point set theory*, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722****[6]**John Marshall Slye,*Flat spaces for which the Jordan curve theorem holds true*, Duke Math. J.**22**(1955), 143–151. MR**0066644****[7]**L. B. Treybig,*Concerning homogeneity in totally ordered, connected topological space*, Pacific J. Math.**13**(1963), 1417–1421. MR**0159309**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54A25

Retrieve articles in all journals with MSC: 54A25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1972-0295278-4

Keywords:
Invariance of domain,
local degree of separability,
homogeneous space

Article copyright:
© Copyright 1972
American Mathematical Society