Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Wild cells in $ E\sp{4}$ in which every arc is tame


Author: Robert J. Daverman
Journal: Proc. Amer. Math. Soc. 34 (1972), 270-272
MSC: Primary 57A15
DOI: https://doi.org/10.1090/S0002-9939-1972-0295312-1
MathSciNet review: 0295312
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Seebeck has proved that if an m-cell C in Euclidean n-space $ {E^n}$ factors k-times, $ m \leqq n - 2$, and $ n \geqq 5$, then every embedding of a compact k-dimensional polyhedron in C is tame relative to $ {E^n}$. We prove the analogous result for $ n = 4$ and $ m \leqq 3$.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 28 #3408. MR 0160194 (28:3408)
  • [2] J. L. Bryant, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc. 155 (1971), 327-332. MR 0276983 (43:2721)
  • [3] J. W. Cannon, Characterizations of tame subsets of 2-spheres in three-dimensional space, Notices Amer. Math. Soc. 17 (1970), 469. Abstract #70T-G43.
  • [4] R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of cells in a 3-manifold, Trans. Amer. Math. Soc. 145 (1969), 369-381. MR 40 #3519. MR 0250280 (40:3519)
  • [5] C. L. Seebeck III, Tame arcs on wild cells, Proc. Amer. Math. Soc. 29 (1971), 197-201. MR 0281177 (43:6896)
  • [6] R. B. Sher, Tame polyhedra in wild cells and spheres, Proc. Amer. Math. Soc. 30 (1971), 169-174. MR 0281178 (43:6897)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57A15

Retrieve articles in all journals with MSC: 57A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0295312-1
Keywords: Tame embedding, wild cell, $ \varepsilon $-push, 1-ULC, factored cell in $ {E^n}$
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society