RECOGNIZING MANIFOLDS AMONG GENERALIZED MANIFOLDS

DENNIS C. HASS

Abstract. This paper provides various conditions, on the complement of a point in a generalized manifold M, which imply that M is a classical topological manifold. Similar characterizations are given for m-spheres and 3-cells.

This paper announces a few results in the classic quest for a property which characterizes the topological manifolds among the generalized manifolds.

It is well known, for example, that if a 3-gm M is a product space then it is a manifold. In [1], Raymond showed that the factors are generalized manifolds. Further, Wilder [2] says these factors are manifolds; thus, M is too. Clearly, then a 3-gm which is locally a product space is also a manifold.

Efforts have been made to weaken this hypothesis. In [3] K.W. Kwun and F. Raymond proved that a 3-gm which is locally conical is a manifold. M is locally conical if for all P in M, P has a neighborhood N such that $N—P=E^1×bN$. Our results show that one need not specify the factors in advance. By assuming, only, that $N—P$ is any product space, we can show that M is still a manifold; see Theorem 3.

Lemma 1. If M is a connected m-gm, for $m≥2$ such that for P in M, $M—P=A×B$ is a product space, then each of $M—P$, A, and B is homologically trivial up through dimension $m—2$.

Proof. Proof of these claims is exactly analogous to Chapter 3 of the author’s dissertation [4], except for one minor change. We replace the fact that $π_kA×B=π_kA×π_kB$ with the Künneth formula and an induction on k. It is also still true, that if B is compact, then $M—P=E^1×B$.

Let M be a connected 3-gm.

Theorem 2. For P in M, if $M—P$ is a product space, then M is either S^3 or E^3.

Received by the editors August 25, 1971.

Key words and phrases. Topological manifolds, classical manifolds, generalized manifolds, locally conical generalized manifold, spheres, cells.

© American Mathematical Society 1972

311
Proof. By Lemma 1, the factorization of $M - P$ is either $E^1 \times E^2$ or $E^1 \times S^3$, respectively.

Theorem 3. If for each P in M, there is an open neighborhood N of P such that $N - P$ is a product space, then M is a classical 3-manifold.

Proof. If N is compact, then $N = M$ and $M = S^3$, by Theorem 2. If N is not compact, then $N = E^3$ by Theorem 2.

Now, let M be a connected m-gm, for $m \geq 4$.

Theorem 4. If for P in M, $M - P$ is a product space, then either $M - P$ is homologically trivial or $M - P$ is E^1 times a generalized $(m-1)$-sphere.

Proof. By Lemma 1, each of $M - P = A \times B$, and A, and B is $(m-2)$-connected with respect to homology. If neither A nor B is compact, then each is homologically trivial and of course so is $M - P$. If B is compact, then as mentioned in the proof of Lemma 1, we have $M - P = E^1 \times B$. Since B is closed and $(m-2)$-connected (homology) the theorem follows.

Theorem 5. If for P in M, $M - P$ is a product of (many?) factors each of dimension 2 or less, then $M = S^m$.

Proof. In view of Lemma 1, we may assume that none of the factors is compact. According to Theorem 4, each factor is either E^1 or E^2.

Next, let M be a compact connected m-gm, for $m \geq 5$.

Theorem 6. For P in M, if $M - P$ is a product of simply-connected (homotopy fundamental group is trivial) PL manifolds A and B, then $M = S^m$.

Proof. Using Theorem 4, $M - P$, A, and B are each $(m-2)$-connected (homotopy this time!). If neither A nor B is compact, then each is contractible.

J. Stallings [5] proved that in this case $M - P = E^m$. Finally, let M be a connected m-gm, for $m \geq 6$.

Theorem 7. If for all P in M, there is a neighborhood N of P such that $N - P = A \times B$ is a product of simply-connected manifolds A and B, then M is a classical m-manifold.

Proof. By Theorem 4, each of $N - P$, A, and B is $(m-2)$-connected (homotopy!). In light of Theorem 6, we may assume that B is compact. By Lemma 1, $N - P = E^1 \times B$ and B is a homotopy $(m-1)$-sphere. Since $m - 1 \geq 5$ we have $B = S^{m-1}$ by the Poincaré theorem. Thus, $N = E^m$ as desired.

That $N - P = A \times B$ inherits the manifold property from A and B is not new; it is new that the homology groups of A and B may be calculated.
and need not be assumed. Note that none of the results here or in [4] relies on the unproven Poincaré conjectures.

ACKNOWLEDGEMENT. I want to thank the Mathematics Department of Randolph-Macon Woman’s College for financial support while I studied this topic.

BIBLIOGRAPHY

Department of Mathematics, Randolph-Macon Woman’s College, Lynchburg, Virginia 24504