Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Derivation modules of free joins and $ m$-adic completions of algebras

Author: I. Y. Chung
Journal: Proc. Amer. Math. Soc. 34 (1972), 49-56
MSC: Primary 13B10
MathSciNet review: 0296061
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A free commutative join of subalgebras corresponds to a direct sum of submodules in a universal derivation module. In particular, indeterminates of a polynomial ring correspond to elements of a linearly independent set in a universal derivation module. As an application, a simple proof of the uniqueness of cardinalities of indeterminates of a polynomial ring can be obtained by using that of linear bases of a free module over a commutative ring. Similar observations are made for $ \mathfrak{m}$-adic completions of algebras and their derivation modules. Also, the module of linear differential forms of an $ \mathfrak{m}$-adic completion of an algebra is studied.

References [Enhancements On Off] (What's this?)

  • [1] R. Berger, Über verschiedene Differentenbegriffe, S.-B. Heidelberger Akad. Wiss. Math-Nat. Kl. 1960/61, 1-44. MR 24 #A1293. MR 0131443 (24:A1293)
  • [2] N. Bourbaki, Eléments de mathématique. I: Les structures fondamentales de l'analyse. Fasc. XI. Livre II: Algèbre. Chap. 4: Polynomes et fractions rationnelles. Chap. 5: Corps commutatifs, Actualités Sci. Indust., no. 1102, Hermann, Paris, 1959. MR 30 #4751.
  • [3] -, Eléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 3: Graduations, filtrations et topologies. Chap. 4: Idéaux premiers associés et décomposition primaire, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
  • [4] C. Chevalley, Fundamental concepts of algebra, Academic Press, New York, 1956. MR 18, 553. MR 0082459 (18:553a)
  • [5] I. Y. Chung, On free joins of algebras and Kähler's differential forms, Abh. Math. Sem. Univ. Hamburg 35 (1970), 92-106. MR 0281711 (43:7426)
  • [6] S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #5416. MR 0197234 (33:5416)
  • [7] Krishna Tewari, Complexes over an algebra, Ph.D. Thesis, McMaster University, Hamilton, Ontario, 1964.
  • [8] O. Zariski and P. Samuel, Commutative algebra. Vol. II, The University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #11006. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B10

Retrieve articles in all journals with MSC: 13B10

Additional Information

Keywords: Free commutative join of algebras, $ \mathfrak{m}$-adic completion, polynomial ring, ring of formal power series, tensor product of algebras, universal derivation module of an algebra
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society