ON A CONJECTURE OF A. J. HOFFMAN. II
JOSEPH ZAKS

ABSTRACT. It is proved that certain incidence relations of hyperplanes and closed convex sets in a d-polytope can be preserved while replacing these sets by suitable polytopal subsets.

The purpose of this paper is to prove

THEOREM 1. If P is a d-polytope in E^d and C_1, \ldots, C_k are closed convex subsets of P, such that every hyperplane that meets P meets $\bigcup_{i=1}^{k} C_i$, then there exist polytopes D_1, \ldots, D_k with $D_i \subseteq C_i$ for all $1 \leq i \leq k$, such that every hyperplane that meets P meets $\bigcup_{i=1}^{k} D_i$.

This settles all the cases $(d, d-1, k)$, for all $d \geq 2$ and $k \geq 1$, of the following conjecture due to A. J. Hoffman [3]:

Conjecture (d, t, k). If P is a d-polytope in E^d, $d \geq 1$; $t \geq 0$ and $k \geq 1$ are integers, C_1, \ldots, C_k are closed convex subsets of P such that every (affine) t-flat that meets P meets $\bigcup_{i=1}^{k} C_i$, then there are polytopes D_1, \ldots, D_k with $D_i \subseteq C_i$ for all $1 \leq i \leq k$, such that every t-flat that meets P meets $\bigcup_{i=1}^{k} D_i$.

A. J. Hoffman proved [3] conjecture $(d, 0, k)$, for all $d \geq 1$ and $k \geq 1$; in these cases the t-flats are points and C_1, \ldots, C_k cover P.

It follows quite elementarily that conjecture $(d, t, 1)$ is true for all $d \geq 1$ and $t \geq 0$, since in this case $C_1 = P$ (see Remark 1, here). W. R. Hare, Jr. and C. R. Smith proved [2] that conjecture $(d, t, 2)$ is true for all $d \geq 1$ and $t \geq 0$. We have previously shown [4] that conjecture $(d, d-2, k)$ is false for all $d \geq 3$ and $k \geq 4$, while here it is shown that conjecture $(d, d-1, k)$ is true for all $d \geq 2$ and $k \geq 1$. Conjecture $(3, 1, 3)$ is true (see Remark 4).

DEFINITIONS. A polytope P is the convex hull of a finite set of points in the Euclidean d-dimensional space E^d; a d-polytope in E^d is a polytope with nonempty interior; Vert P denotes here the set of vertices of a polytope P; if $A \subseteq E^d$, conv A denotes the convex hull of A.

An (affine) t-flat in E^d is a translate of a t-dimensional subspace of E^d, and a hyperplane is a $(d-1)$-flat. If H is a hyperplane in E^d, then H_+ and H_- (H_+ and H_-) denote the two closed (open, respectively) half-spaces of E^d, determined by H.

Presented to the Society, January 23, 1971; received by the editors October 28, 1970.
AMS 1969 subject classifications. Primary 5210, 5230; Secondary 5245.
Key words and phrases. Convex d-polytope, hyperplane, closed convex set.

© American Mathematical Society 1972

215
A hyperplane H supports a compact set X in E^d if $X \subset H_+$ and $H \cap X \neq \emptyset$. A hyperplane H separates (strictly separates) A and B if $A \subset H_+$ and $B \subset H_-(A \subset H_+ \text{ and } B \subset H_-)$, respectively. For additional definitions and information the reader is referred to [1].

Remark 1. If P, C_1, \ldots, C_k are as given in conjecture (d, t, k), for some $d \geq 1$, $k \geq 1$, and $0 \leq t \leq d-1$, then $Vert P \subseteq \bigcup_{i=1}^{k} C_i$. To establish this, let $v \in Vert P$; there exists a hyperplane H_v of P such that $H_v \cap P = \{v\}$. H_v clearly contains a t-flat F_v through v. Since F_v is a t-flat that meets P (at v), it follows by the assumptions that F_v meets $\bigcup_{i=1}^{k} C_i$, i.e., $F_v \cap (\bigcup_{i=1}^{k} C_i) \neq \emptyset$, and since $\bigcup_{i=1}^{k} C_i \subset P$, $F_v \cap (\bigcup_{i=1}^{k} C_i) \subset F_v \cap P = \{v\}$; hence $v \in \bigcup_{i=1}^{k} C_i$ and therefore $Vert F_v \subseteq \bigcup_{i=1}^{k} C_i$.

In case $k = 1$, it follows that $Vert P \subseteq C_1$, and therefore $C_1 = P$, since C_1 is a convex set contained in P. As a result, conjecture $(d, t, 1)$ is (trivially) true for all $d \geq 1$ and $0 \leq t \leq d-1$.

We need the following:

Lemma 1. If C is a convex set in E^d, $x \in E^d$, and A and B are such that $C = \text{conv} (A \cup B)$, then every hyperplane that meets C meets $\text{conv} (A \cup x) \cup \text{conv} (B \cup x)$.

Proof. Let Y be defined by $Y = \text{conv} (A \cup x) \cup \text{conv} (B \cup x)$; every pair of points y_1 and y_2 of Y are connected by the polyhedral path $y_1x \cup xy_2$ which lies entirely in Y.

Let H be an arbitrary hyperplane such that $H \cap C \neq \emptyset$. If $A \subset H_+$ and $B \subset H_+$, then $\text{conv} (A \cup B) \subset H_+$, hence $C \subset H_+$, but this implies $C \cap H = \emptyset$ — a contradiction; therefore $A \cup B \notin H_+$, and similarly $A \cup B \notin H_-$.

Therefore $A \cup B$ contains a point y_1 in H_+ and a point y_2 in H_-; $y_1, y_2 \in Y$ since $Y \supseteq A \cup B$. The polyhedral path in Y that connects y_1 to y_2 clearly meets H, hence $Y \cap H \neq \emptyset$ and the proof is complete.

Corollary 1. If P is a polytope in E^d, $x \in E^d$, and $Vert P = A \cup B$, then every hyperplane that meets P meets $\text{conv}(A \cup x) \cup \text{conv}(B \cup x)$.

Proof. In this case $P = \text{conv}(Vert P) = \text{conv}(A \cup B)$, and Lemma 1 is applicable (with $P = C$).

Since the replacement of k compact convex sets by polytopes can be done one at a time, we state and prove the following:

Theorem 2. If P is a d-polytope in E^d, C_1, \ldots, C_k are closed convex subsets of P such that every hyperplane that meets P meets $\bigcup_{i=1}^{k} C_i$, then there exists a polytope D_1 in C_i such that every hyperplane that meets P meets $D_1 \cup \bigcup_{i=2}^{k} C_i$.

Theorem 3. If P is a d-polytope in E^d, C_1, \ldots, C_k are closed convex subsets of P, $C_i \cap C_j = \emptyset$ for all $1 \leq i < j \leq k$ and every hyperplane that meets
If \(P \) meets \(\bigcup_{i=1}^{k} C_i \), then there exists a polytope \(D_1 \) in \(C_1 \) such that every hyperplane that meets \(P \) meets \(D_1 \cup \bigcup_{i=2}^{k} C_i \).

Clearly Theorems 1 and 2 are equivalent; our proof of Theorem 1 uses the following.

Claim 1. Theorem 3 implies Theorem 2.

Proof of Claim 1. Assuming Theorem 3 is true, we prove Theorem 2 by induction on \(k \). In Case \(k=1 \), \(C_1=P \) (by Remark 1), and one chooses \(D_1=C_1 \).

Assume inductively that the assertion is true for \(k-1 \), \(k \geq 2 \), and let \(P, C_1, \ldots, C_k \) be given as described in the statement of Theorem 2. Since the inductive assumption takes care of the cases in which \(C_i=\emptyset \) for some \(1 \leq i \leq k \), we assume that \(C_i \neq \emptyset \) for all \(1 \leq i \leq k \). If \(C_i \cap C_j=\emptyset \) for all \(1 \leq i<j \leq k \), then the existence of \(D_1 \) with the required property is guaranteed by Theorem 3, which is assumed to hold. Otherwise, let \(m \) and \(n \) be such that \(C_m \cap C_n \neq \emptyset \) and \(1 \leq m<n \leq k \), and let \(x \in C_m \cap C_n \).

Define \(C_1^*, \ldots, C_{k-1}^* \) by

\[
C_i^* = \begin{cases}
\text{conv}(C_m \cup C_n) & \text{if } i=m, \\
C_i & \text{if } i < m \text{ or } m < i < n, \\
C_{i+1} & \text{if } i \geq n.
\end{cases}
\]

Clearly, \(P \) together with \(C_1^*, \ldots, C_{k-1}^* \) satisfy all the conditions of Theorem 2, hence the inductive assumption implies that there exists a polytope \(D_1^* \) in \(C_1^* \) such that every hyperplane that meets \(P \) meets \(D_1^* \cup \bigcup_{i=2}^{k} C_i^* \).

Case 1. \(m \neq 1 \). Choose \(D_1=D_1^* \). If \(H \) is a hyperplane that meets \(P \), then \(H \) meets \(D_1 \cup \bigcup_{i=2}^{k} C_i^* \), i.e. \(H \) meets \(D_1 \cup \bigcup_{i \geq 2; i \neq m} C_i \cup \text{conv}(C_m \cup C_n) \).

If \(H \) meets \(D_1 \cup \bigcup_{i \geq 2; i \neq m} C_i \), then clearly \(H \) meets \(D_1 \cup \bigcup_{i=2}^{k} C_i \), as required. If \(H \) meets \(\text{conv}(C_m \cup C_n) \), then by Lemma 1, \(H \) meets \(\text{conv}(C_m \cup y) \cup \text{conv}(C_n \cup y) \) for every \(y \in E^d \), hence in particular \(H \) meets \(\text{conv}(C_m \cup x) \cup \text{conv}(C_n \cup x) \) (where \(x \in C_m \cap C_n \)); this means that \(H \) meets \(C_m \cap C_n \), because \(C_m \) and \(C_n \) are convex sets. Therefore \(H \) meets \(D_1 \cup \bigcup_{i=2}^{k} C_i \), as required.

Case 2. \(m=1 \). In this case \(D_1^* \subset C_1^*=\text{conv}(C_1 \cup C_n) \). Every vertex of \(D_1^* \) is a finite convex combination of points of \(C_1 \) and points of \(C_n \), therefore there exists a polytope \(D_1^{**} \) in \(\text{conv}(C_1 \cup C_n) \) such that \(D_1^{**} \supset D_1^* \) and \(\text{Vert}(D_1^{**}) \subset C_1 \cup C_n \).

Define \(D_1 \) by \(D_1=\text{conv}[x \cup (\text{Vert } D_1^{**} \cap C_1)] \), where \(x \in C_1 \cap C_n \). Let \(H \) be an arbitrary hyperplane that meets \(P \); \(H \) meets \(D_1^* \cup \bigcup_{i=2; i \neq m}^{k-1} C_i= D_1^* \cup \bigcup_{i \geq 2; i \neq m} C_i \), and since \(D_1^{**} \supset D_1^* \), \(H \) meets \(D_1^{**} \cup \bigcup_{i \geq 2; i \neq m} C_i \). If \(H \) meets \(\bigcup_{i \geq 2; i \neq m} C_i \), then clearly \(H \) meets \(D_1 \cup \bigcup_{i=2; i \neq m}^{k-1} C_i \), as required. If \(H \) meets \(D_1^{**} \), then by Corollary 1, \(H \) meets \(\text{conv}[x \cup (\text{Vert } D_1^{**} \cap C_1)] \cup \text{conv}[x \cup (\text{Vert } D_1^{**} \cap C_n)] \); the first set in this union is \(D_1 \), by the definition
of \(D_1 \), and therefore if \(H \) meets \(D_1 \) it clearly meets \(D_1 \cup \bigcup_{i=2}^{k} C_i \), as required. If, however, \(H \) meets \(\text{conv}[x \cup \text{Vert}(D^*_1 \cap C_n)] \), then \(H \) meets \(C_n \), since \(x \in C_1 \cap C_n \subseteq C_n \) and \(C_n \) is a convex set; therefore \(H \) meets \(D_1 \cup \bigcup_{i=2}^{k} C_i \), and Claim 1 has been established.

Proof of Theorem 3. By induction on \(k \), starting with the case \(k=1 \) being true by Remark 1. Assume inductively that the assertion is true for \(k-1, k \geq 2 \), and let \(P, C_1, \ldots, C_k \) be given as described in the statement of Theorem 3 (assume as before that \(C_i \neq \emptyset \) for all \(1 \leq i \leq k \)).

Suppose first that for some \(j \), \(1 \leq j \leq k \), every hyperplane that meets \(P \) meets \(\bigcup_{i \neq j} C_i \). If \(j \neq 1 \), then by the inductive assumption applied to \(P, C_1, \ldots, C_{j-1}, C_{j+1}, \ldots, C_k \), there exists a polytope \(D_1 \) in \(C_1 \), such that every hyperplane that meets \(P \) meets \(D_1 \cup \bigcup_{i \neq j} C_i \); therefore every hyperplane that meets \(P \) meets \(D_1 \cup \bigcup_{i=2}^{k} C_i \), as required. If \(j = 1 \), then any choice for a \(D_1 \) in \(C_1 \) will do.

If however there is no such \(j \), then there are hyperplanes that meet \(C_1 \) and do not meet \(\bigcup_{i=2}^{k} C_i \).

For every hyperplane \(H \) with \(\cap C_1 \neq \emptyset \) and \(\cap (\bigcup_{i \neq 1} C_i) = \emptyset \) define \(K_1 \) and \(K_2 \) by

\[
K_1 = \text{conv} \bigcup \{ C_i \mid C_i \subseteq H^+ \} \quad \text{and} \quad K_2 = \text{conv} \bigcup \{ C \mid C \subseteq H_- \}.
\]

Clearly \(K_1 \subseteq H^+ \) and \(K_2 \subseteq H_- \), hence \(K_1 \cap K_2 = \emptyset \); not both of \(K_1 \) and \(K_2 \) are empty since \(\cap (\bigcup_{i \neq 1} C_i) = \emptyset \), \(k \geq 2 \) and \(C_i \neq \emptyset \) for all \(1 \leq i \leq k \).

Claim 2. If \(K_1 \neq \emptyset \) and \(K_2 \neq \emptyset \), then \(C \) contains a segment \(L \) such that if a hyperplane \(F \) separates \(K_1 \) and \(K_2 \) then \(F \cap L = \emptyset \).

Proof. If \(K_1 \cap \text{conv}(K_2 \cup C_1) = \emptyset \), then \(K_1 \) and \(\text{conv}(K_2 \cup C_1) \) can be strictly separated by a hyperplane \(F_0 \); hence \(F_0 \cap \bigcup_{i=1}^{k} C_i = \emptyset \); however \(K_1 \neq \emptyset \), \(\text{conv}(K_2 \cup C_1) \neq \emptyset \) and \(P \) being convex imply that \(F_0 \cap P \neq \emptyset \), which contradicts the assumption on \(P, C_1, \ldots, C_k \). Therefore \(K_1 \cap \text{conv}(K_2 \cup C_1) \neq \emptyset \) and similarly \(K_2 \cap \text{conv}(K_1 \cup C_1) \neq \emptyset \).

Take \(x_1 \in K_1 \cap \text{conv}(K_2 \cup C_1) \); then there are points \(y_1 \in K_2 \) and \(z_1 \in C_1 \) such that \(x_1 = \lambda y_1 + (1-\lambda)z_1 \), for some \(0 \leq \lambda \leq 1 \); similarly take \(y_2 \in K_2 \cap \text{conv}(K_1 \cup C_1) \), then there are points \(x_2 \in K_1 \) and \(z_2 \in C_1 \) such that \(y_2 = \mu x_2 + (1-\mu)z_2 \), for some \(0 \leq \mu \leq 1 \) (see Figure 1).

The promised segment \(L \) in \(C_1 \) is taken as the segment \([z_1 z_2] \). Suppose a hyperplane \(F \) separates \(K_1 \) and \(K_2 \), so that say \(K_1 \subseteq F_+ \) and \(K_2 \subseteq F_- \). Clearly \(x_1, x_2 \in K_1 \subseteq F_+ \) and \(y_1, y_2 \in K_2 \subseteq F_- \). Since \(x_1 = \lambda y_1 + (1-\lambda)z_1 \) and \(0 \leq \lambda \leq 1 \) it follows that \(z_1 \in F_+ \), and similarly \(y_2 = \mu x_2 + (1-\mu)z_2 \) and \(0 \leq \mu \leq 1 \) imply \(z_2 \in F_- \). As a result \(F \) meets the segment \([z_1 z_2] = L \), and Claim 2 has been established.

Claim 3. If \(K_1 = \emptyset \), then \(C_1 \) contains a segment \(L \) such that if a hyperplane \(F \) meets \(C_1 \) and \(\bigcup_{i \neq 1} C_i \subseteq F_+ \) (or \(\bigcup_{i \neq 1} C_i \subseteq F_- \)), then

\[
F \cap \text{conv}(L \cup (\text{Ext} \cap C_1)) \neq \emptyset.
\]
Figure 1

Proof. \(C_1 \cap \text{conv}(\bigcup_{i \neq 1} C_i) \neq \emptyset \) since otherwise \(C_1 \) and \(\text{conv}(\bigcup_{i \neq 1} C_i) \) are strictly separated by a hyperplane \(F_0 \), hence \(F_0 \cap (\bigcup_{i=1}^k C_i) = \emptyset \); since \(P \) is convex it follows that \(F_0 \cap P \neq \emptyset \) which contradicts the assumption on \(P, C_1, \ldots, C_k \). Let \(x \in C_1 \cap \text{conv}(\bigcup_{i \neq 1} C_i) \), and take for the segment \(L \) any segment in \(C_1 \) containing \(x \) (in fact \(L = \{x\} \) is as good).

Suppose \(F \) is a hyperplane that meets \(C_1 \) and \(\bigcup_{i \neq 1} C_i \subset \hat{F}_+ \); therefore \(\text{conv}(\bigcup_{i \neq 1} C_i) \subset \hat{F}_+ \) and hence \(x \in \hat{F}_+ \). Next \(F \cap C_1 \neq \emptyset \), hence \(F_- \cap C_1 \neq \emptyset \) and therefore \(F_- \cap P \neq \emptyset \); hence \(F_- \cap \text{Ext} P \neq \emptyset \). Moreover \(F_- \cap \text{Ext} P \subset C_1 \), because \(\text{Vert} P \subset \bigcup_{i=1}^k C_i \) (see Remark 1), and hence \(F_- \cap \text{Ext} P \subset F_- \cap \bigcup_{i=1}^{k-1} C_i = F_- \cap C_1 \subset C_1 \).

We conclude that \(x \in \hat{F}_+ \) and \(C_1 \) contains a vertex \(y \) of \(P \) with \(y \in F_- \); therefore \(F \cap \text{conv}[L \cup (\text{Ext} P \cap C_1)] \neq \emptyset \).

Claim 3 has been established.

Let \(L_1, \ldots, L_r \) be a collection of segments in \(C_1 \), each one obtained by applying Claims 2 and 3 to each and every different division \(\{2, \ldots, k\} = I \cup J \) with \(I \cap J = \emptyset \), for which there exists a hyperplane \(H \) with \(H \cap C_1 \neq \emptyset \), \(\hat{H}_+ \supset \bigcup_{i \in I} C_i \) and \(\hat{H}_- \supset \bigcup_{j \in J} C_i \).

Define \(D_1 \) by \(D_1 = \text{conv}([L_1 \cup (\text{Ext} P \cap C_1)]) \). To show that \(D_1 \) has the required property as claimed in Theorem 3, suppose a hyperplane \(H \) meets \(P \). If \(P \cap (\bigcup_{i \neq 1} C_i) \neq \emptyset \), then clearly \(P \cap (D_1 \cup (\bigcup_{i \neq 1} C_i)) \neq \emptyset \). Otherwise \(P \cap (\bigcup_{i \neq 1} C_i) = \emptyset \), and since \(H \cap P \neq \emptyset \), it follows that \(H \cap C_1 \neq \emptyset \). By Claim 2 or 3, \(C_1 \) contains the segment \(L_j \) for the appropriate \(j, 1 \leq j \leq r \), such that \(H \cap \text{conv}[L_j \cup (\text{Ext} P \cap C_1)] \neq \emptyset \), hence \(H \cap D_1 \neq \emptyset \) as needed. \(D_1 \) is clearly a polytope in \(C_1 \).

This completes the proof of Theorem 3.
The proof of Theorem 1 follows now easily from the proof of Theorem 3, which implies Theorem 2 by Claim 1, and the equivalence of Theorems 2 and 1.

Remark 2. Shortly before proving conjecture \((d, d-1, k)\) for all \(d \geq 2\) and \(k \geq 1\), we established conjecture \((2, 1, k)\) for all \(k \geq 1\), using the following:

Claim 4. If \(C_1\) and \(C_2\) are disjoint compact convex sets in \(E^2\), then they have at most four (4) common supporting lines.

Claim 5. If \(C_1\) and \(C_2\) are disjoint compact convex sets in \(E^d, d \geq 2\), \(\{H_i | i \in I\}\) the collection of all the common supporting hyperplanes to \(C_1\) and \(C_2\), \(x_i \in H_i \cap C_1\) and \(y_i \in H_i \cap C_2\) for all \(i \in I\), then every hyperplane that meets both \(C_1\) and \(C_2\) meets \(\operatorname{conv}(x_i | i \in I) \cup \operatorname{conv}(y_i | i \in I)\).

Both Claims 4 and 5 in the case \(d = 2\) imply the following: “If \(C_1\) and \(C_2\) are disjoint compact convex sets in \(E^2\), then there exist convex quadrangles \(D_1\) and \(D_2\), \(x_i \in D_i \subseteq C_i\) for \(i = 1, 2\), such that every hyperplane that meets both \(C_1\) and \(C_2\) meets \(D_1 \cup D_2\).” Unfortunately, the index set \(I\) in Claim 5 is infinite for all \(d \geq 3\), and there is no valid analogue of the last theorem for \(E^d, d \geq 3\), with “convex quadrangle” replaced by “polytopes” (take, for example, two disjoint balls).

Remark 3. Lemma 1 can be extended as follows:

Lemma 2. If \(C\) is a convex set in \(E^d, x \in E^d\), and \(\{A_i | i \in I\}\) are such that \(C = \operatorname{conv} \bigcup \{A_i | i \in I\}\), then every hyperplane that meets \(C\) meets \(\bigcup_{i \in I} \operatorname{conv}(x \cup A_i)\).

The proof is similar to the proof of Lemma 1, hence it is omitted.

Corollary 2. If \(P\) is a polytope in \(E^d, x \in E^d\), and \(\{v_1, \ldots, v_n\} = \operatorname{Vert} P\), then every hyperplane that meets \(P\) meets \(\bigcup_{i=1}^{n} [x, v_i]\).

Let a graph (= finite 1-dimensional simplicial complex) be called starshape if it has exactly \(n+1\) vertices, one of valence \(n\) and \(n\) of valence 1, \(n \geq 1\).

Corollary 3. If \(P\) is a \(d\)-polytope in \(E^d\), \(C_1, \ldots, C_k\) are closed convex subsets of \(P\), such that every hyperplane that meets \(P\) meets \(\bigcup_{i=1}^{k} C_i\), then there exist starshapes \(G_1, \ldots, G_k\) with \(G_i \subseteq C_i\) for all \(1 \leq i \leq k\), such that every hyperplane that meets \(P\) meets \(\bigcup_{i=1}^{k} G_i\).

Proof. There exist, by Theorem 1, polytopes \(D_1, \ldots, D_k\) with \(D_i \subseteq C_i\) for all \(1 \leq i \leq k\), such that every hyperplane that meets \(P\) meets \(\bigcup_{i=1}^{k} D_i\); let \(x_i \in D_i\), and define \(G_i\) by \(G_i = \bigcup \{[x, v_i] | v_i \in \operatorname{Vert} D_i\}\), for all \(1 \leq i \leq k\). \(G_i\) is a starshape, for all \(1 \leq i \leq k\), and every hyperplane that meets \(\bigcup_{i=1}^{k} D_i\) meets \(\bigcup_{i=1}^{k} G_i\), by Corollary 2.
Remark 4. Conjecture (3, 1, 3) has been recently established by the author of this paper, using some ideas of [2]; the proof will appear.

Remark 5. As stated in [3], it was M. O. Rabin who first proposed conjecture \((d, 0, k)\), for all \(d \geq 1\) and \(k \geq 1\).

REFERENCES

Department of Mathematics, Michigan State University, East Lansing, Michigan 48823

Current address: Department of Mathematics, University of Haifa, Haifa, Israel