Involutorial division rings with arbitrary centers
Author:
Abraham A. Klein
Journal:
Proc. Amer. Math. Soc. 34 (1972), 38-42
MSC:
Primary 16A40; Secondary 16A28
DOI:
https://doi.org/10.1090/S0002-9939-1972-0304425-7
MathSciNet review:
0304425
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: It is proved that for an arbitrary field k there exists an involutorial division ring having k as its center.
- [1] S. A. Amitsur, Differential polynomials and division algebras, Ann. of Math. (2) 59 (1954), 245-278. MR 15, 679. MR 0060499 (15:679b)
- [2] P. M. Cohn, Universal algebra, Harper and Row, New York, 1965. MR 31 #224. MR 0175948 (31:224)
- [3] -, Rings of fractions, Amer. Math. Monthly 78 (1971), 596-615. MR 0285561 (44:2779)
- [4] -, The embedding of firs into skew fields, Proc. London Math. Soc. 23 (1971), 193-213. MR 0297814 (45:6866)
- [5] -, Universal skew fields of fractions, Sympos. Math. (to appear).
- [6] N. Jacobson, The theory of rings, Math. Surveys, vol. 1, Amer. Math. Soc., Providence, R.I., 1943. MR 5, 31. MR 0008601 (5:31f)
- [7] A. V. Jategaonkar, Ore domains and free algebras, Bull. London Math. Soc. 1 (1969), 45-46. MR 39 #241. MR 0238881 (39:241)
- [8] S. Montgomery, Polynomial identity algebras with involutions, Proc. Amer. Math. Soc. 27 (1971), 53-56. MR 42 #4590. MR 0269695 (42:4590)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A40, 16A28
Retrieve articles in all journals with MSC: 16A40, 16A28
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1972-0304425-7
Keywords:
Involutorial division ring,
differential polynomials,
universal field of fractions,
fir,
universal inverting ring,
full matrix,
honest closure,
k-free product
Article copyright:
© Copyright 1972
American Mathematical Society