Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Involutorial division rings with arbitrary centers


Author: Abraham A. Klein
Journal: Proc. Amer. Math. Soc. 34 (1972), 38-42
MSC: Primary 16A40; Secondary 16A28
DOI: https://doi.org/10.1090/S0002-9939-1972-0304425-7
MathSciNet review: 0304425
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that for an arbitrary field k there exists an involutorial division ring having k as its center.


References [Enhancements On Off] (What's this?)

  • [1] S. A. Amitsur, Differential polynomials and division algebras, Ann. of Math. (2) 59 (1954), 245-278. MR 15, 679. MR 0060499 (15:679b)
  • [2] P. M. Cohn, Universal algebra, Harper and Row, New York, 1965. MR 31 #224. MR 0175948 (31:224)
  • [3] -, Rings of fractions, Amer. Math. Monthly 78 (1971), 596-615. MR 0285561 (44:2779)
  • [4] -, The embedding of firs into skew fields, Proc. London Math. Soc. 23 (1971), 193-213. MR 0297814 (45:6866)
  • [5] -, Universal skew fields of fractions, Sympos. Math. (to appear).
  • [6] N. Jacobson, The theory of rings, Math. Surveys, vol. 1, Amer. Math. Soc., Providence, R.I., 1943. MR 5, 31. MR 0008601 (5:31f)
  • [7] A. V. Jategaonkar, Ore domains and free algebras, Bull. London Math. Soc. 1 (1969), 45-46. MR 39 #241. MR 0238881 (39:241)
  • [8] S. Montgomery, Polynomial identity algebras with involutions, Proc. Amer. Math. Soc. 27 (1971), 53-56. MR 42 #4590. MR 0269695 (42:4590)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A40, 16A28

Retrieve articles in all journals with MSC: 16A40, 16A28


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0304425-7
Keywords: Involutorial division ring, differential polynomials, universal field of fractions, fir, universal inverting ring, full matrix, honest closure, k-free product
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society