Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pólya peaks and the oscillation of positive functions


Authors: David Drasin and Daniel F. Shea
Journal: Proc. Amer. Math. Soc. 34 (1972), 403-411
MSC: Primary 26A48
DOI: https://doi.org/10.1090/S0002-9939-1972-0294580-X
MathSciNet review: 0294580
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new proof is given of the existence of Pólya peaks of an (increasing) function $ g(t)$. This approach yields several applications, including a characterization of those p for which g can have peaks of order p.


References [Enhancements On Off] (What's this?)

  • [1] D. Drasin, Tauberian theorems and slowly varying functions, Trans. Amer. Math. Soc. 133 (1968), 333-356. MR 37 #1607. MR 0226017 (37:1607)
  • [2] D. Drasin and D. F. Shea, Convolution inequalities, regular variation and exceptional sets (to appear). MR 0477619 (57:17137)
  • [3] A. Edrei, The deficiencies of meromorphic functions of finite lower order, Duke Math. J. 31 (1964), 1-21. MR 28 #1306. MR 0158079 (28:1306)
  • [4] -, Sums of deficiencies of meromorphic functions, J. Analyse Math. 14 (1965), 79-107. MR 31 #4909. MR 0180678 (31:4909)
  • [5] -, A local form of the Phragmén-Lindelöf indicator, Mathematika 17 (1970), 149-172. MR 42 #2000. MR 0267098 (42:2000)
  • [6] A. Edrei and W. H. J. Fuchs, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292-328. MR 22 #770. MR 0109887 (22:770)
  • [7] -, Valeurs déficientes et valeurs asymptotiques des fonctions méromorphes, Comment. Math. Helv. 33 (1959), 258-295. MR 23 #A1038. MR 0123716 (23:A1038)
  • [8] -, The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (1960), 233-249. MR 23 #A1039. MR 0123717 (23:A1039)
  • [9] W. Feller, On regular variation and local limit theorems, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part I, Univ. of California Press, Berkeley, Calif., 1967, pp. 373-388. MR 36 #2200. MR 0219117 (36:2200)
  • [10] W. H. J. Fuchs, Théorie de l'approximation des fonctions d'une variable complexe, Séminaire de Mathématiques Supérieures, no. 26 (Été 1967), Les Presses de l'Université de Montréal, Que., 1968. MR 41 #5630. MR 0261010 (41:5630)
  • [11] W. K. Hayman, Meromorphic functions, Oxford Math. Monographs, Clarendon Press, Oxford, 1964. MR 29 #7337. MR 0164038 (29:1337)
  • [12] B. Kjellberg, On the minimum modulus of entire functions of lower order less than one, Math. Scand. 8 (1960), 189-197. MR 23 #A3264. MR 0125967 (23:A3264)
  • [13] J. Korevaar, T. van Aardenne-Ehrenfest and N. G. de Bruijn, A note on slowly oscillating functions, Nieuw Arch. Wisk. (2) 23 (1949), 77-86. MR 10, 358. MR 0027812 (10:358b)
  • [14] G. Pólya, Bemerkungen über unendliche Folgen und ganze Funktionen, Math. Ann. 88 (1923), 169-83. MR 1512126
  • [15] D. F. Shea, On the Valiron deficiencies of meromorphic functions of finite order, Trans. Amer. Math. Soc. 124 (1966), 210-227. MR 34 #351. MR 0200458 (34:351)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A48

Retrieve articles in all journals with MSC: 26A48


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0294580-X
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society