Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On nonstrongly regular matrices


Authors: J. Bazinet and J. A. Siddiqi
Journal: Proc. Amer. Math. Soc. 34 (1972), 428-432
MSC: Primary 40C05
DOI: https://doi.org/10.1090/S0002-9939-1972-0294935-3
MathSciNet review: 0294935
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the Rudin-Shapiro sequence, the existence of a regular but not strongly regular positive matrix that sums $ \{ \exp (2\pi ikt)\} $ to 0 for all $ t \in (0,1)$ is established. As a corollary it is shown that there exist matrices that sum all almost periodic sequences without possessing the Borel property and vice versa.


References [Enhancements On Off] (What's this?)

  • [1] J. D. Hill, The Borel property of summability methods, Pacific J. Math. 1 (1951), 399-409. MR 13, 340. MR 0043920 (13:340a)
  • [2] E. Hille and J. D. Tamarkin, On the summability of Fourier series. I, Trans. Amer. Math. Soc. 34 (1932), 757-783. MR 1501662
  • [3] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. MR 10, 367. MR 0027868 (10:367e)
  • [4] S. M. Nikol'skii, On linear methods of summation of Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 259-278. (Russian) MR 10, 247. MR 0027084 (10:247b)
  • [5] G. M. Petersen, Regular matrix transformations, McGraw-Hill, New York, 1966. MR 37 #642. MR 0225045 (37:642)
  • [6] W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855-859. MR 22 #6979. MR 0116184 (22:6979)
  • [7] J. A. Siddiqi, Infinite matrices summing every almost periodic sequence, Pacific J. Math. 39 (1971), 235-252. MR 0304920 (46:4051)
  • [8] B. Sz.-Nagy, Méthodes de sommation des séries de Fourier. I, Acta Sci. Math. (Szeged) 12 (1950), 204-210. MR 11, 656. MR 0034873 (11:656c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40C05

Retrieve articles in all journals with MSC: 40C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0294935-3
Keywords: Regular, strongly regular, almost convergence, Fourier-effective, Borel property, almost periodic
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society