Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Morse lemma on Banach spaces


Author: A. J. Tromba
Journal: Proc. Amer. Math. Soc. 34 (1972), 396-402
MSC: Primary 58E05; Secondary 58B10
DOI: https://doi.org/10.1090/S0002-9939-1972-0295395-9
MathSciNet review: 0295395
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:U \to R$ be a $ {C^3}$ map of an open subset U of a Banach space E. Let $ p \in U$ be a critical point of $ f(d{f_p} = 0)$. If E is a conjugate space $ (E = {F^ \ast })$ we define what it means for p to be nondegenerate. In this case there is a diffeomorphism $ \gamma $ of a neighborhood of p with a neighborhood of $ 0 \in E,\gamma (p) = 0$ with

$\displaystyle f \circ {\gamma ^{ - 1}}(x) = \frac{1}{2}{d^2}{f_p}(x,x) + f(p).$


References [Enhancements On Off] (What's this?)

  • [1] N. Dunford and J. T. Schwartz, Linear operators. I. General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [2] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962. MR 27 #5192. MR 0155257 (27:5192)
  • [3] R. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340. MR 28 #1633. MR 0158410 (28:1633)
  • [4] -, The Morse lemma for Banach spaces, Bull. Amer. Math. Soc. 75 (1969), 968-971. MR 0253378 (40:6593)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E05, 58B10

Retrieve articles in all journals with MSC: 58E05, 58B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0295395-9
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society