Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Weyl spectrum of a Hilbert space operator


Author: John V. Baxley
Journal: Proc. Amer. Math. Soc. 34 (1972), 447-452
MSC: Primary 47A10
DOI: https://doi.org/10.1090/S0002-9939-1972-0298444-7
MathSciNet review: 0298444
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the perturbation definition of the Weyl spectrum, conditions are given on a closed (possibly unbounded) linear operator T in a Hilbert space which allow the Weyl spectrum to be characterized as a subset of the spectrum of T.


References [Enhancements On Off] (What's this?)

  • [1] J. V. Baxley, Some general conditions implying Weyl's theorem, Rev. Roumaine Math. Pures Appl. 16 (1971), 1163-1166. MR 0305107 (46:4237)
  • [2] S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279, MR 40 #3335. MR 0250094 (40:3335)
  • [3] R. H. Bouldin, Essential spectrum for a Hilbert space operator, Trans. Amer. Math. Soc. 163 (1972), 437-445. MR 0284837 (44:2061)
  • [4] -, The Weyl essential spectrum, Proc. Amer. Math. Soc. 28 (1971), 531-536. MR 0278093 (43:3825)
  • [5] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. MR 34 #1846. MR 0201969 (34:1846)
  • [6] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [7] V. Istrăţescu, Weyl's theorem for a class of operators, Rev. Roumaine Math. Pures Appl. 13 (1968), 1103-1105. MR 38 #6381. MR 0238105 (38:6381)
  • [8] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [9] A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958. MR 20 #5411. MR 0098966 (20:5411)
  • [10] H. Weyl, Über beschrankte quadratische Formen deren differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A10

Retrieve articles in all journals with MSC: 47A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0298444-7
Keywords: Weyl spectrum, Hilbert space operator, eigenvalue, algebraic multiplicity, geometric multiplicity, perturbation, compact operators
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society