Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of strongly measurable Pettis integrable functions


Author: J. J. Uhl
Journal: Proc. Amer. Math. Soc. 34 (1972), 425-427
MSC: Primary 28A45
DOI: https://doi.org/10.1090/S0002-9939-1972-0316675-4
MathSciNet review: 0316675
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{X}$ be a Banach space and $ (\Omega ,\Sigma ,\mu )$ be a finite measure space. A strongly measurable $ f:\Omega \to \mathfrak{X}$ is Pettis integrable if and only if there exists a Young's function $ \Phi $ with $ {\lim _{t \to \infty }}\Phi (t)/t = \infty $ such that $ {x^ \ast }f \in {L^\Phi }(\mu )$ for all $ {x^ \ast } \in {\mathfrak{X}^ \ast }$.


References [Enhancements On Off] (What's this?)

  • [1] James K. Brooks, Representations of weak and strong integrals in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 266-270. MR 43 #266. MR 0274697 (43:459)
  • [2] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [3] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [4] M. A. Krasnosel'skii and Ja. B. Rutickii, Convex functions and Orlicz spaces, GITTL, Moscow, 1958; English transl., Noordhoff, Groningen, 1961. MR 21 #5144; MR 23 #A4016. MR 0126722 (23:A4016)
  • [5] Paul A. Meyer, Probability and potentials, Blaisdell, Waltham, Mass., 1966. MR 34 #5119. MR 0205288 (34:5119)
  • [6] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 227-304. MR 1501970
  • [7] A. C. Zaanen, Linear analysis, measure and integral, Banach and Hilbert space, linear integral equations, Interscience, New York; North-Holland, Amsterdam; Noordhoff, Groningen, 1953. MR 15, 878. MR 0061752 (15:878b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A45

Retrieve articles in all journals with MSC: 28A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0316675-4
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society