ISOMORPHISM TYPES OF INFINITE
SYMMETRIC GRAPHS

C. M. BANG

Abstract. Professor Bjarni Jónsson asked about the cardinality of isomorphism types of infinite symmetric graphs of order m, for each infinite cardinal m. We show that there are 2^m pairwise non-isomorphic infinite symmetric graphs of order m, for each infinite cardinal m.

A symmetric graph is an ordered pair (U, F) where F is a symmetric relation over the set U. The cardinality of U is referred to as the order of the graph. Professor Bjarni Jónsson stated in [2, p. 31] that, as far as we know, the cardinality of the class of all pairwise nonisomorphic infinite symmetric graphs of order m, for each infinite cardinal m, is unknown. Since F is a subset of $U \times U$, it is trivial to see that 2^m is an upper bound. In this paper, we shall settle this cardinality question by proving the following theorem.

Theorem. The cardinality of the isomorphism types of infinite symmetric graphs of order m is 2^m for each infinite cardinal m.

We base our proof on the result by Professors Comer and LeTourneau [1] that there are 2^m pairwise nonisomorphic 1-unary root algebras of order m, for each infinite cardinal m. With each 1-unary root algebra $A = (U, f)$, we associate the symmetric graph $\bar{A} = (U, F)$ where $F = f \cup f^{-1}$. To complete the proof of our theorem, it is therefore sufficient to prove the following lemma.

Lemma. Let $\bar{A} = (U, F)$ and $\bar{B} = (U, G)$ be two symmetric graphs associated with two 1-unary root algebras $A = (U, f)$ and $B = (U, g)$, respectively. If \bar{A} and \bar{B} are two isomorphic symmetric graphs, then A and B are two isomorphic 1-unary root algebras.

Let a be the fixed point of $A = (U, f)$. Note that a is the only fixed point, i.e., it is the only element of U satisfying $f(a) = a$. Let us write $x \rightarrow^f y$ or...
y \rightarrow^f x \text{ if } f(x) = y.

(1) For each point } x \in U, \text{ there is one and only one arrow leaving } x.

(2) The loop arrow } a \rightarrow^f a \text{ is the only arrow leaving the fixed point } a.

(3) For each } x \neq a \in U \text{ there is a least positive integer } n, \text{ depending on } x, \text{ satisfying } f^n(x) = a. \text{ We shall call } n \text{ the height of } x. \text{ Then, we have connecting arrows from } x \text{ to } a \text{ as follows:}

\[
\begin{array}{ccccccc}
& & x & \xrightarrow{f} & f(x) & \xrightarrow{f} & \cdots & \xrightarrow{f} & f^{n-1}(x) & \xrightarrow{f} & f^n(x) = a
\end{array}
\]

with } f^{n-1}(x) \neq f^n(x), \text{ i.e., } f^{n-1}(x) \neq a.

Proof. Assume that } \Phi \text{ is a symmetric graph isomorphism from } \tilde{A} = (U, F) \text{ onto } \tilde{B} = (U, G). \text{ We shall show that } \Phi \text{ is a 1-unary root algebra isomorphism from } A = (U, f) \text{ onto } B = (U, g). \text{ Since } \Phi \text{ already is a bijection on } U, \text{ it suffices to show that } g(\Phi(x)) = \Phi(f(x)) \text{ for each } x \in U, \text{ or equivalently,}

\[
\Phi(x) \xrightarrow{g} \Phi(f(x)) \quad \text{for each } x \in U.
\]

In other words, it is sufficient to show that } \Phi \text{ is arrow preserving.

Since } (x, f(x)) \in f \subseteq f \cup f^{-1} = F \text{ and since } \Phi \text{ is a symmetric graph isomorphism from } \tilde{A} = (U, F) \text{ to } \tilde{B} = (U, G), \text{ we have } \Phi(x, f(x)) \in G. \text{ But, then}

\[
(\Phi(x), \Phi(f(x)) = \Phi(x, f(x)) \in G = g \cup g^{-1},
\]

which means

\[
\begin{array}{c}
\Phi(x) \xrightarrow{g} \Phi(f(x)) \\
\Phi(f(x)) \xleftarrow{g} \Phi(x)
\end{array}
\]

in an obvious sense. Note that to prove (*) is to prove that the top arrow of (4) holds.

If } x = a, \text{ then (4) coincides with } \Phi(a) \rightarrow^g \Phi(a) \text{ in either case which shows, first, that (*) is true in case } x = a \text{ and, second, that}

\[
\Phi(a) \text{ is the fixed point, say, } b \text{ of } \tilde{B} = (U, G).
\]

If } x \neq a, \text{ let } n \geq 1 \text{ be the height of } x. \text{ By our observations (3), (4) and (5), we have}

\[
\begin{array}{ccccccc}
\Phi(x) & \xleftarrow{g} & \Phi(f(x)) & \xleftarrow{g} & \Phi(f^2(x)) & \cdots & \xleftarrow{g} & \Phi(f^{n-1}(x)) & \xleftarrow{g} & \Phi(f^n(x)) = b
\end{array}
\]

with } \Phi(f^{n-1}(x)) \neq \Phi(f^n(x)) = b. \text{ (The upper and lower subscripts of } g \text{ are attached only for the convenience of ensuing quotations.) By our early
observation (2) we see that \(g^n \) holds while \(g_n \) does not. Since \(g^n \) already is an arrow leaving the element \(\phi(f^{n-1}(x)) \) in \(B \), there can be no other arrow leaving \(\phi(f^{n-1}(x)) \) by observation (1). Hence, \(g^{n-1} \) must hold, while \(g_{n-1} \) does not. Similarly applying (1) over and over, we shall have

\[
\phi(x) \xrightarrow{g} \phi(f(x)) \xrightarrow{g} \cdots \xrightarrow{g} \phi(f^{n-1}(x)) \xrightarrow{g} \phi(f^n(x)) = b
\]

the first arrow (from the left) of which surely proves (*). This completes a proof of our lemma and, consequently, our theorem.

Recall [1] that each of the aforementioned Comer-LeTourneau 1-unary root algebras has only the trivial automorphism group. From this, the following is immediate.

Corollary. There are \(2^m \) pairwise nonisomorphic infinite symmetric graphs of order \(m \), for each infinite cardinal \(m \), each with only the trivial automorphism group.

References

Department of Mathematics, Emory University, Atlanta, Georgia 30322